·ÖÎö £¨¢ñ£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨a2+1£©x2+4a2x+3a2=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÍÖÔ²¶¨Ò壬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨-x1£¬y1£©£¬Q£¨x0£¬y0£©£¬ÇÒM£¨0£¬m£©£¬N£¨0£¬n£©£¬ÓÉÒÑÖªÇó³öm=$\frac{{x}_{0}{y}_{1}-{x}_{1}{y}_{0}}{{x}_{0}-{x}_{1}}$£¬n=$\frac{{x}_{0}{y}_{1}+{x}_{1}{y}_{0}}{{x}_{0}+{x}_{1}}$£¬ÓÉ´ËÄÜÇó³ömnΪ¶¨Öµ1£®
½â´ð ½â£º£¨¢ñ£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨a2+1£©x2+4a2x+3a2=0£¬
¡ßÖ±Ïßy=x+2ÓëÍÖÔ²Óй«¹²µã£¬
¡à¡÷=16a4-4£¨a2+1£©¡Á3a2¡Ý0£¬½âµÃa2¡Ý3£¬¡àa$¡Ý\sqrt{3}$£¬
ÓÖÓÉÍÖÔ²¶¨ÒåÖª|PF1|+|PF2|=2a£¬
¹Êµ±a=$\sqrt{3}$ʱ£¬|PF1|+|PF2|È¡µÃ×îСֵ£¬
´ËʱÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}=1$£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨-x1£¬y1£©£¬Q£¨x0£¬y0£©£¬ÇÒM£¨0£¬m£©£¬N£¨0£¬n£©£¬
¡ßkQA=kQM£¬¡à$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$=$\frac{{y}_{0}-m}{{x}_{0}}$£¬
¼´${y}_{0}-m=\frac{{x}_{0}£¨{y}_{0}-{y}_{1}£©}{{x}_{0}-{x}_{1}}$£¬
¡àm=${y}_{0}-\frac{{x}_{0}£¨{y}_{0}-{y}_{1}£©}{{x}_{0}-{x}_{1}}$=$\frac{{x}_{0}{y}_{1}-{x}_{1}{y}_{0}}{{x}_{0}-{x}_{1}}$£¬
ͬÀí£¬µÃn=$\frac{{x}_{0}{y}_{1}+{x}_{1}{y}_{0}}{{x}_{0}+{x}_{1}}$£¬
¡àmn=$\frac{{x}_{0}y-{x}_{1}{y}_{0}}{{x}_{0}-{x}_{1}}$•$\frac{{x}_{0}{y}_{1}+{x}_{1}{y}_{0}}{{x}_{0}+{x}_{1}}$=$\frac{{{x}_{0}}^{2}{{y}_{1}}^{2}-{{x}_{1}}^{2}{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}$£¬
ÓÖ$\frac{{{x}_{0}}^{2}}{3}$+${{y}_{0}}^{2}$=1£¬$\frac{{{x}_{1}}^{2}}{3}+{{y}_{1}}^{2}=1$£¬
¡à${{y}_{0}}^{2}=1-\frac{{{x}_{0}}^{2}}{3}$£¬${{y}_{1}}^{2}=1-\frac{{{x}_{1}}^{2}}{3}$£¬
¡àmn=$\frac{{{x}_{0}}^{2}£¨1-\frac{{{x}_{1}}^{2}}{3}£©-{{x}_{1}}^{2}£¨1-\frac{{{x}_{0}}^{2}}{3}£©}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}$=$\frac{{{x}_{0}}^{2}-{{x}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}$=1£¬
¡àmnΪ¶¨Öµ1£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁ½ÊµÊýÖµµÄ³Ë»ýÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÍÖÔ²·½³ÌµÄÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| É豸 | ²úÆ·¢ñÿ¼þÐèÒª¼Ó¹¤Ê±¼ä | ²úÆ·¢òÿ¼þÐèÒª¼Ó¹¤Ê±¼ä | É豸×ʹÓÃʱ¼ä |
| A | 2Сʱ | 2Сʱ | 12Сʱ |
| B | 1Сʱ | 2Сʱ | 8Сʱ |
| C | 4Сʱ | 0Сʱ | 16Сʱ |
| D | 0Сʱ | 4Сʱ | 12Сʱ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com