15£®ÒÑÖªµãPÊÇÖ±Ïßl£ºy=x+2ÓëÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+y2=1£¨a£¾1£©µÄÒ»¸ö¹«¹²µã£¬F1£¬F2·Ö±ðΪ¸ÃÍÖÔ²µÄ×óÓÒ½¹µã£¬Éè|PF1|+|PF2|È¡µÃ×îСֵʱÍÖԲΪC£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì¼°ÀëÐÄÂÊ£»
£¨¢ò£©ÒÑÖªA£¬BΪÍÖÔ²CÉϹØÓÚyÖá¶Ô³ÆµÄÁ½µã£¬QÊÇÍÖÔ²CÉÏÒìÓÚA£¬BµÄÈÎÒâÒ»µã£¬Ö±ÏßQA£¬QB·Ö±ðÓëyÖá½»ÓÚµãM£¨0£¬m£©£¬N£¨0£¬n£©£¬ÊÔÅжÏmnÊÇ·ñΪ¶¨Öµ£»Èç¹ûΪ¶¨Öµ£¬Çó³ö¸Ã¶¨Öµ£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨a2+1£©x2+4a2x+3a2=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÍÖÔ²¶¨Ò壬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨-x1£¬y1£©£¬Q£¨x0£¬y0£©£¬ÇÒM£¨0£¬m£©£¬N£¨0£¬n£©£¬ÓÉÒÑÖªÇó³öm=$\frac{{x}_{0}{y}_{1}-{x}_{1}{y}_{0}}{{x}_{0}-{x}_{1}}$£¬n=$\frac{{x}_{0}{y}_{1}+{x}_{1}{y}_{0}}{{x}_{0}+{x}_{1}}$£¬ÓÉ´ËÄÜÇó³ömnΪ¶¨Öµ1£®

½â´ð ½â£º£¨¢ñ£©ÁªÁ¢$\left\{\begin{array}{l}{y=x+2}\\{\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨a2+1£©x2+4a2x+3a2=0£¬
¡ßÖ±Ïßy=x+2ÓëÍÖÔ²Óй«¹²µã£¬
¡à¡÷=16a4-4£¨a2+1£©¡Á3a2¡Ý0£¬½âµÃa2¡Ý3£¬¡àa$¡Ý\sqrt{3}$£¬
ÓÖÓÉÍÖÔ²¶¨ÒåÖª|PF1|+|PF2|=2a£¬
¹Êµ±a=$\sqrt{3}$ʱ£¬|PF1|+|PF2|È¡µÃ×îСֵ£¬
´ËʱÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}=1$£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨-x1£¬y1£©£¬Q£¨x0£¬y0£©£¬ÇÒM£¨0£¬m£©£¬N£¨0£¬n£©£¬
¡ßkQA=kQM£¬¡à$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$=$\frac{{y}_{0}-m}{{x}_{0}}$£¬
¼´${y}_{0}-m=\frac{{x}_{0}£¨{y}_{0}-{y}_{1}£©}{{x}_{0}-{x}_{1}}$£¬
¡àm=${y}_{0}-\frac{{x}_{0}£¨{y}_{0}-{y}_{1}£©}{{x}_{0}-{x}_{1}}$=$\frac{{x}_{0}{y}_{1}-{x}_{1}{y}_{0}}{{x}_{0}-{x}_{1}}$£¬
ͬÀí£¬µÃn=$\frac{{x}_{0}{y}_{1}+{x}_{1}{y}_{0}}{{x}_{0}+{x}_{1}}$£¬
¡àmn=$\frac{{x}_{0}y-{x}_{1}{y}_{0}}{{x}_{0}-{x}_{1}}$•$\frac{{x}_{0}{y}_{1}+{x}_{1}{y}_{0}}{{x}_{0}+{x}_{1}}$=$\frac{{{x}_{0}}^{2}{{y}_{1}}^{2}-{{x}_{1}}^{2}{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}$£¬
ÓÖ$\frac{{{x}_{0}}^{2}}{3}$+${{y}_{0}}^{2}$=1£¬$\frac{{{x}_{1}}^{2}}{3}+{{y}_{1}}^{2}=1$£¬
¡à${{y}_{0}}^{2}=1-\frac{{{x}_{0}}^{2}}{3}$£¬${{y}_{1}}^{2}=1-\frac{{{x}_{1}}^{2}}{3}$£¬
¡àmn=$\frac{{{x}_{0}}^{2}£¨1-\frac{{{x}_{1}}^{2}}{3}£©-{{x}_{1}}^{2}£¨1-\frac{{{x}_{0}}^{2}}{3}£©}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}$=$\frac{{{x}_{0}}^{2}-{{x}_{1}}^{2}}{{{x}_{0}}^{2}-{{x}_{1}}^{2}}$=1£¬
¡àmnΪ¶¨Öµ1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁ½ÊµÊýÖµµÄ³Ë»ýÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÍÖÔ²·½³ÌµÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{{\begin{array}{l}{x-y+1¡Ý0}\\{x+y-1¡Ý0}\\{3x-y-3¡Ü0}\end{array}}$£¬Ôòz=£¨$\frac{1}{2}$£©2x-yµÄ×îСֵΪ$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³¹¤³§Òª°²ÅÅÉú²ú¢ñ£¬¢òÁ½ÖÖ²úÆ·£¬ÕâЩ²úÆ·ÒªÔÚA£¬B£¬C£¬DËÄÖÖ²»Í¬µÄÉ豸Éϼӹ¤£¬°´¹¤Òչ涨£¬ÔÚÒ»ÌìÄÚ£¬Ã¿¼þ²úÆ·ÔÚ¸÷É豸ÉÏÐèÒª¼Ó¹¤µÄʱ¼ä£¬¼°¸÷É豸ÏÞÖÆ×ʹÓÃʱ¼äÈçÏÂ±í£º
É豸²úÆ·¢ñÿ¼þÐèÒª¼Ó¹¤Ê±¼ä²úÆ·¢òÿ¼þÐèÒª¼Ó¹¤Ê±¼äÉ豸×ʹÓÃʱ¼ä
A2Сʱ2Сʱ12Сʱ
B1Сʱ2Сʱ8Сʱ
C4Сʱ0Сʱ16Сʱ
D0Сʱ4Сʱ12Сʱ
Éè¼Æ»®Ã¿ÌìÉú²ú²úÆ·¢ñµÄÊýÁ¿Îªx£¨¼þ£©£¬²úÆ·¢òµÄÊýÁ¿Îªy£¨¼þ£©£¬
£¨¢ñ£©ÓÃx£¬yÁгöÂú×ãÉ豸ÏÞÖÆÊ¹ÓÃÒªÇóµÄÊýѧ¹ØÏµÊ½£¬²¢»­³öÏàÓ¦µÄÆ½ÃæÇøÓò£»
£¨¢ò£©ÒÑÖª²úÆ·¢ñÿ¼þÀûÈó2£¨ÍòÔª£©²úÆ·¢òÿ¼þÀûÈó3£¨ÍòÔª£©£¬ÔÚÂú×ãÉ豸ÏÞÖÆÊ¹ÓÃÒªÇóµÄÇé¿öÏ£¬Îʸù¤³§ÔÚÿÌìÄÚ²úÆ·¢ñ£¬²úÆ·¢ò¸÷Éú²ú¶àÉÙ»áʹÀûÈó×î´ó£¬²¢Çó³ö×î´óÀûÈó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èôf£¨x£©=log3a[£¨a2-3a£©x]ÔÚ£¨-¡Þ£¬0£©ÉÏÊǼõº¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨$\frac{1}{3}$£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÊýÁÐ{an}£¬SnÊÇÆäǰnÏîµÄºÍÇÒÂú×ã3an=2Sn+n£¨n¡ÊN*£©£¬ÔòSn=$\frac{{3}^{n+1}-3-2n}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµã£¨1£¬$\frac{3}{2}$£©£¬ÇÒÀëÐÄÂÊe=$\frac{1}{2}$£¬¹ýÍÖÔ²ÓÒ½¹µãF×÷»¥Ïà´¹Ö±µÄÁ½Ö±ÏßÓëÆäÓÒ×¼Ïß½»ÓÚµãM¡¢N£¬AΪÍÖÔ²µÄ×󶥵㣬Á¬½ÓAM¡¢AN½»ÍÖÔ²ÓÚP£¬QÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóMNµÄ×îСֵ£»
£¨3£©ÎÊ£ºÖ±ÏßPQÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬ÇëÇó³ö´Ë¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬$\overrightarrow{AB}$=£¨1£¬2£©£¬$\overrightarrow{AC}$=£¨-4£¬2£©£¬Ôò¸ÃƽÐÐËıßÐεÄÃæ»ýΪ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®É輯ºÏA={4£¬5£¬7£¬9}£¬B={3£¬4£¬7£¬8}£¬Ôò¼¯ºÏA¡ÉBÖеÄÔªËØ¹²ÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ë«ÇúÏßµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊe=$\frac{\sqrt{6}}{2}$£¬Ð±ÂÊΪ1µÄÖ±Ïßl¾­¹ýM£¨2£¬0£©ÇÒ´ËË«ÇúÏßÓël½»ÓÚA¡¢BÁ½µã£¬Èô|AB|=4$\sqrt{3}$£¬ÇóË«ÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸