精英家教网 > 高中数学 > 题目详情
4.设集合A={4,5,7,9},B={3,4,7,8},则集合A∩B中的元素共有(  )
A.1个B.2个C.3个D.4个

分析 由A与B,求出两集合的交集,即可作出判断.

解答 解:∵A={4,5,7,9},B={3,4,7,8},
∴A∩B={4,7},
则集合A∩B中的元素共有2个,
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和Sn,数列{bn}为等差数列,b1=1,bn>0(n≥2),b2Sn+an=2且3a2=2a3+a1
(1)求{an}、{bn}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}}$,Tn=$\frac{b_1}{{{c_1}+1}}+\frac{b_2}{{{c_2}+1}}+…+\frac{b_n}{{{c_n}+1}}$,证明:Tn<$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P是直线l:y=x+2与椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的一个公共点,F1,F2分别为该椭圆的左右焦点,设|PF1|+|PF2|取得最小值时椭圆为C.
(Ⅰ)求椭圆C的标准方程及离心率;
(Ⅱ)已知A,B为椭圆C上关于y轴对称的两点,Q是椭圆C上异于A,B的任意一点,直线QA,QB分别与y轴交于点M(0,m),N(0,n),试判断mn是否为定值;如果为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若复数z满足|z+3|=|z-4i|(i为虚数单位),则|z|的最小值为$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB是△ABC外接圆O的直径,四边形DCBE为矩形,且DC⊥平面ABC,AB=4,BE=1.
(1)证明:直线BC⊥平面ACD;
(2)当三棱锥E-ABC的体积最大时,求异面直线CO与DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,则目标函数z=2x+3y的最大值为(  )
A.2B.3C.11D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个顶点作一条渐近线的垂线,垂足为P,记以双曲线的实轴为长轴且过点P的椭圆的离心率为e1,双曲线的离心率为e2,则$\frac{1}{{e}_{1}^{2}}$-$\frac{1}{{e}_{2}^{2}}$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过△ABC的重心G任作一条直线分别交AB,AC于点D、E,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AG}$;
(2)若$\overrightarrow{AD}$=x$\overrightarrow{AB}$,$\overrightarrow{AE}$=y$\overrightarrow{AC}$,且xy≠0,求$\frac{1}{x}$+$\frac{1}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.非空集合A={(x,y)$\left\{\begin{array}{l}{ax-2y+8≥0}\\{x-y-1≤0}\\{2x+ay-2≤0}\end{array}\right.$},当(x,y)∈A时,对任意实数m,目标函数z=x+my的最大值和最小值至少有一个不存在,则实数a的取值范围是(  )
A.(-∞,2)B.[0,2)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

同步练习册答案