精英家教网 > 高中数学 > 题目详情
10.已知数列{an},Sn是其前n项的和且满足3an=2Sn+n(n∈N*),则Sn=$\frac{{3}^{n+1}-3-2n}{4}$.

分析 3an=2Sn+n(n∈N*),n=1时,3a1=2a1+1,解得a1.n≥2时,可得:3an-3an-1=2an+1,化为an=3an-1+1,变形为:an$+\frac{1}{2}$=3(an-1+$\frac{1}{2}$),利用等比数列的通项公式可得an,进而得出Sn

解答 解:∵3an=2Sn+n(n∈N*),
∴n=1时,3a1=2a1+1,解得a1=1.
n≥2时,3an-1=2Sn-1+(n-1),可得:3an-3an-1=2an+1,
化为an=3an-1+1,变形为:an$+\frac{1}{2}$=3(an-1+$\frac{1}{2}$),
∴数列$\{{a}_{n}+\frac{1}{2}\}$是等比数列,首项为$\frac{3}{2}$,公比为3.
∴an+$\frac{1}{2}$=$\frac{3}{2}$×3n-1,即an=$\frac{{3}^{n}}{2}$-$\frac{1}{2}$.
∴$3×\frac{1}{2}({3}^{n}-1)$=2Sn+n,解得Sn=$\frac{{3}^{n+1}-3-2n}{4}$.
故答案为:$\frac{{3}^{n+1}-3-2n}{4}$.

点评 本题考查了递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知全集U=R,集合A={x|(x+2)(x-2)≤0},则集合∁RA=(  )
A.(2,+∞)B.[2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“x>2”是“x2-2x>0”成立的(  )
A.既不充分也不必要条件B.充要条件
C.必要而不充分条件D.充分而不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知z是纯虚数,i为虚数单位,$\frac{z+2}{1-i}$在复平面内所对应的点在实轴上,那么z等于(  )
A.2iB.iC.-iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某校共有学生2000名,各年级男、女生人数如表中所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.18.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为(  )
一年级二年级三年级
女生363xy
男生387390z
A.12B.16C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P是直线l:y=x+2与椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的一个公共点,F1,F2分别为该椭圆的左右焦点,设|PF1|+|PF2|取得最小值时椭圆为C.
(Ⅰ)求椭圆C的标准方程及离心率;
(Ⅱ)已知A,B为椭圆C上关于y轴对称的两点,Q是椭圆C上异于A,B的任意一点,直线QA,QB分别与y轴交于点M(0,m),N(0,n),试判断mn是否为定值;如果为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-ax2-bx-1,其中e为自然对数的底数,a,b为实常数.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-1)x-1,求函数f(x)的值域;
(2)若f(1)=0,且存在x1,x2∈(0,1),使得f(x1)f(x2)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB是△ABC外接圆O的直径,四边形DCBE为矩形,且DC⊥平面ABC,AB=4,BE=1.
(1)证明:直线BC⊥平面ACD;
(2)当三棱锥E-ABC的体积最大时,求异面直线CO与DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.双曲线中,焦点为F1(-3,0),F2(3,0),实半轴a=2,则双曲线的方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

同步练习册答案