精英家教网 > 高中数学 > 题目详情
5.某校共有学生2000名,各年级男、女生人数如表中所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.18.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为(  )
一年级二年级三年级
女生363xy
男生387390z
A.12B.16C.18D.24

分析 先求出三年级学生数是多少,再求用分层抽样法在三年级抽取的学生数.

解答 解:根据题意得,共有学生2000名,抽到二年级女生的概率是0.18,则二年级的女生的人数为2000×0.18=360,
一、二年级学生总数363+387+360+390=1500,
∴三年级学生总数是2000-1500=500;
用分层抽样法在三年级抽取的学生数为
64×$\frac{500}{2000}$=16.
故选:B.

点评 本题考查了分层抽样方法的应用问题,解题时应了解分层抽样方法的特点,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{2}{1+i}$(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列结论中,正确的是(  )
A.“x>2”是“x2-2x>0”成立的必要条件
B.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,则“$\overrightarrow{a}$∥$\overrightarrow{b}$”是“$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$”的充要条件
C.命题“p:?x∈R,x2≥0”的否定形式为“¬p:?x0∈R,x02≥0”
D.命题“若x2=1,则x=1”的逆否命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),F1,F2为C的左右焦点,P为C右支上一点,且使∠F1PF2=$\frac{π}{3}$,又△F1PF2的面积为3$\sqrt{3}$a2
(I)求双曲线C的离心率e;
(Ⅱ)设A为C的左顶点,Q为第一象限内C上任意一点,问是否存在常数λ(λ>0),使得∠QF2A=λ∠QAF2恒成立,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?(  )
A.120B.240C.360D.480

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an},Sn是其前n项的和且满足3an=2Sn+n(n∈N*),则Sn=$\frac{{3}^{n+1}-3-2n}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知焦点在y轴上的椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,且过点($\frac{\sqrt{2}}{2}$,$\sqrt{2}$),不过椭圆顶点的动直线l:y=kx+m与椭圆C交于A、B两点.求:
(1)椭圆C的标准方程;
(2)求三角形AOB面积的最大值,并求取得最值时直线OA、OB的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数y=f(x)的图象与函数y=3x+a的图象关于直线y=-x对称,且f(-1)+f(-3)=3,则实数a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知过点(0,-$\sqrt{2}$)的直线l与双曲线x2-y2=1有两个交点,求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案