精英家教网 > 高中数学 > 题目详情
5.双曲线的中心在原点,焦点在x轴上,离心率e=$\frac{\sqrt{6}}{2}$,斜率为1的直线l经过M(2,0)且此双曲线与l交于A、B两点,若|AB|=4$\sqrt{3}$,求双曲线的方程.

分析 由离心率公式可得c=$\frac{\sqrt{6}}{2}$a,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\frac{\sqrt{2}}{2}$a,设出直线AB方程,然后联立双曲线的方程消去y得x的方程,利用|AB|=4$\sqrt{3}$,建立方程,即可求a=$\sqrt{2}$,求得b,即可得到所求双曲线的方程.

解答 解:设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),
由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,即c=$\frac{\sqrt{6}}{2}$a,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\frac{\sqrt{2}}{2}$a,
设直线方程为y=x-2,
将b=$\frac{\sqrt{2}}{2}$a代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,即有x2-2y2=a2
整理可得x2-8x+8+a2=0,
设A(x1,y1),B(x2,y2),
可得x1+x2=8,x1x2=8+a2
|AB|=$\sqrt{1+1}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{64-4(8+{a}^{2})}$=4$\sqrt{3}$,
解得a=$\sqrt{2}$,即有b=1,
则双曲线的方程为$\frac{{x}^{2}}{2}$-y2=1.

点评 本题考查双曲线的标准方程的求法,注意运用直线方程和双曲线的方程联立,运用韦达定理和弦长公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知点P是直线l:y=x+2与椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的一个公共点,F1,F2分别为该椭圆的左右焦点,设|PF1|+|PF2|取得最小值时椭圆为C.
(Ⅰ)求椭圆C的标准方程及离心率;
(Ⅱ)已知A,B为椭圆C上关于y轴对称的两点,Q是椭圆C上异于A,B的任意一点,直线QA,QB分别与y轴交于点M(0,m),N(0,n),试判断mn是否为定值;如果为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个顶点作一条渐近线的垂线,垂足为P,记以双曲线的实轴为长轴且过点P的椭圆的离心率为e1,双曲线的离心率为e2,则$\frac{1}{{e}_{1}^{2}}$-$\frac{1}{{e}_{2}^{2}}$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过△ABC的重心G任作一条直线分别交AB,AC于点D、E,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AG}$;
(2)若$\overrightarrow{AD}$=x$\overrightarrow{AB}$,$\overrightarrow{AE}$=y$\overrightarrow{AC}$,且xy≠0,求$\frac{1}{x}$+$\frac{1}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.双曲线中,焦点为F1(-3,0),F2(3,0),实半轴a=2,则双曲线的方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=2cos2(x+$\frac{π}{4}$)-1的一个单调递减区间是(  )
A.($\frac{π}{2}$,$\frac{3π}{2}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(-$\frac{π}{2}$,$\frac{π}{2}$)D.(-$\frac{π}{4}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输出的值为-5,则判断框中可以填入的条件为(  )
A.z>10?B.z≤10?C.z>20?D.z≤20?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.非空集合A={(x,y)$\left\{\begin{array}{l}{ax-2y+8≥0}\\{x-y-1≤0}\\{2x+ay-2≤0}\end{array}\right.$},当(x,y)∈A时,对任意实数m,目标函数z=x+my的最大值和最小值至少有一个不存在,则实数a的取值范围是(  )
A.(-∞,2)B.[0,2)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{2x+3,-3≤x<1}\\{{x}^{2}-2,1≤x<3}\\{{e}^{1-x},3≤x≤5}\end{array}\right.$,求:
(1)f(-2),f(0),f(f(1)),f(2);
(2)函数f(x)的定义域.

查看答案和解析>>

同步练习册答案