精英家教网 > 高中数学 > 题目详情
函数f(x)=sinx+
x
在区间[0,+∞)内(  )
A、没有零点
B、有且仅有1个零点
C、有且仅有2个零点
D、有且仅有3个零点
考点:函数零点的判定定理
专题:函数的性质及应用
分析:根据f(0)=0,且函数f(x)在[0,
π
2
]上单调递增,故函数在[0,
π
2
]上有唯一零点x=0.再根据当x∈(
π
2
,+∞)时,f(x)=sinx+
x
>0,没有零点,可得函数在区间[0,+∞)内的零点个数.
解答: 解:对于函数f(x)=sinx+
x
,显然满足f(0)=0,且函数在[0,
π
2
]上单调递增,
故函数在[0,
π
2
]上有唯一零点x=0.
当x∈(
π
2
,+∞)时,f(x)=sinx+
x
>0,故函数在(
π
2
,+∞)上没有零点.
综上可得,函数f(x)=sinx+
x
在区间[0,+∞)内有且仅有1个零点,
故选:B.
点评:本题主要考查函数的零点个数的判断方法,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一条线段的长等于10,两端点A、B分别在x轴和y轴上滑动,M在线段AB上且
AM
=4
MB
,则点M的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=1,点P(x0,y0)是直线l:3x+2y-4=0上的动点,若在圆C上总存在不同的两点A,B使得
OA
+
OB
=
OP
,则x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,当x<0时,f′(x)>0,且f(-1)=0,则不等式f(x)<0的解集为 (  )
A、{x|x<-1}
B、{x|0<x<1}
C、{x|x<-1或0<x<1}
D、{x|x≥1或-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合S={1,2},集合T={x|(x-1)(x-3)=0},那么S∪T=(  )
A、∅B、{1}
C、{1,2}D、{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,如图,AB是圆柱的母线,BC是圆柱底面圆的直径,D是圆柱底面圆上与B、C不重合的点,用<MN,EF>表示直线MN、EF的夹角.
(Ⅰ)在三棱锥A-BCD中,写出所有两棱的夹角(不写出具体的角度值);
(Ⅱ)在三棱锥A-BCD中的六条棱中取两条棱,求这两条棱互相垂直的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=|
OB
|=1,
OA
OB
=0,点C满足
OC
OA
OB
(λ,μ∈R),且∠AOC=30°,则
λ
μ
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn
(2)若不等式
1
S1
+
1
S2
+…+
1
Sn
m-2010
4
对n∈N*成立,求最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x+y-4≤0
x-y≥0,y≥0
,则z=x+2y的最大值为
 

查看答案和解析>>

同步练习册答案