精英家教网 > 高中数学 > 题目详情
10.求函数y=-cos2x+sinx,(|x|≤$\frac{π}{4}$)的最大值和最小值以及使该函数取得最值时的x的集合.

分析 利用三角函数的平方关系式,化简函数的表达式,结合x的范围,求出sinx的范围,然后求出函数的最值.

解答 解:函数f(x)=-cos2x+sinx=-1+sin2x+sinx=(sinx+$\frac{1}{2}$)2-$\frac{5}{4}$,
因为|x|≤$\frac{π}{4}$,所以sinx∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],
当sinx=-$\frac{1}{2}$即x=-$\frac{π}{6}$时,函数取得最小值-$\frac{5}{4}$,该函数取得最小值时的x的集合{-$\frac{π}{6}$}.
当sinx=$\frac{\sqrt{2}}{2}$,即x=$\frac{π}{4}$时,函数取得最大值$\frac{\sqrt{2}-1}{2}$.该函数取得最大值时的x的集合{$\frac{π}{4}$}.

点评 本题是中档题,考查三角函数的化简求值,考查计算能力转化思想,常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)是二次函数,且方程f(x)+3x=0的根是0和1,f(-2)=0,则f(x)=-x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知sin(α-$\frac{π}{3}$)=$\frac{3}{5}$,α∈[$\frac{5π}{6}$,$\frac{5π}{4}$],则cosα=$-\frac{4+3\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知AE⊥面EBC,EO⊥面ABC于O.求证:AO⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求数列1,a+a2,a3+a4+a5,a6+a7+a8+a9,…的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线y=x+2与函数y=ln(ex+a)的图象相切,e为自然对数的底,则a为(  )
A.$\frac{e}{2}$B.-$\frac{e}{2}$C.2eD.-2e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知线段AB,CD分别在两条异面直线上,M,N分别是线段AB,CD的中点,求证:MN<$\frac{1}{2}$(AC+BD)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={x|x>1},B={x|-1<x<2},则A∩B等于{x|1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知s=x2+4y-1,t=2x-y2-9则(  )
A.s>tB.s=tC.s<tD.无法判断

查看答案和解析>>

同步练习册答案