精英家教网 > 高中数学 > 题目详情
5.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求tanα和sin2α的值.

分析 利用同角三角函数的基本关系,二倍角公式,求得tanα和sin2α的值.

解答 解:∵cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,sin2α=2sinαcosα=2•$\frac{4}{5}$•(-$\frac{3}{5}$)=-$\frac{24}{25}$.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线l1过点A(2,1),直线l2:2x-y-1=0.
(Ⅰ)若直线l1与直线l2平行,求直线l1的方程;
(Ⅱ)若直线l1与y轴、直线l2分别交于点M,N,|MN|=|AN|,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设m=3${∫}_{-1}^{1}$(x2+sinx)dx,则多项式(x+$\frac{1}{m\sqrt{x}}$)6的常数项(  )
A.-$\frac{5}{4}$B.$\frac{5}{4}$C.$\frac{20}{3}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.甲、乙两人下象棋,甲获胜的概率是$\frac{1}{3}$,下成和棋的概率是$\frac{1}{2}$,则甲输棋的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆(x-2)2+y2=1的圆心坐标是(  )
A.(2,0)B.(0,2)C.(-2,0)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若三个正数a,b,c成等比数列,其中a=5+2$\sqrt{6}$,c=5-2$\sqrt{6}$,则b=(  )
A.$\frac{1}{2}$B.1C.5D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设$\overrightarrow{e_1},\overrightarrow{e_2}$是两个不共线的向量,已知$\overrightarrow{AB}=2\overrightarrow{e_1}+m\overrightarrow{e_2},\overrightarrow{BC}=\overrightarrow{e_1}+3\overrightarrow{e_2}$,若A,B,C三点共线,则实数m=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),($\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则λ等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a2017=b(a>0,且a≠1),则(  )
A.logab=2017B.logba=2017C.log2017a=bD.log2017b=a

查看答案和解析>>

同步练习册答案