精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;
(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;
(3)设函数 ,若对任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.

【答案】
(1)解:∵函数f(x)=ax2﹣x+2a﹣1(a>0)的图象是开口朝上,且以直线x= 为对称轴的抛物线,

若f(x)在区间[1,2]为单调增函数

解得:


(2)解:①当0< <1,即a> 时,f(x)在区间[1,2]上为增函数,

此时g(a)=f(1)=3a﹣2

②当1≤ ≤2,即 时,f(x)在区间[1, ]是减函数,在区间[ ,2]上为增函数,

此时g(a)=f( )=

③当 >2,即0<a< 时,f(x)在区间[1,2]上是减函数,

此时g(a)=f(2)=6a﹣3

综上所述:


(3)解:对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,

即f(x)min≥h(x)max

由(2)知,f(x)min=g(a)

又因为函数

所以函数h(x)在[1,2]上为单调减函数,所以

①当 时,由g(a)≥h(x)max得: ,解得 ,(舍去)

②当 时,由g(a)≥h(x)max得: ,即8a2﹣2a﹣1≥0,

∴(4a+1)(2a﹣1)≥0,解得

所以

③当 时,由g(a)≥h(x)max得: ,解得

所以a

综上所述:实数a的取值范围为


【解析】(1)若f(x)在区间[1,2]为单调增函数,则 ,解得a的取值范围;(2)分类讨论给定区间与对称轴的关系,分析出各种情况下g(x)的表达式,综合讨论结果,可得答案;(3)不等式f(x1)≥h(x2)恒成立,即f(x)min≥h(x)max , 分类讨论各种情况下实数a的取值,综合讨论结果,可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】轮船从某港口将一些物品送到正航行的轮船上,在轮船出发时,轮船位于港口北偏西且与相距20海里的处,并正以30海里的航速沿正东方向匀速行驶,假设轮船沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇.

(1)若使相遇时轮船航距最短,则轮船的航行速度大小应为多少?

(2)假设轮船的最高航速只能达到30海里/小时,则轮船以多大速度及什么航行方向才能在最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N,数列{bn}满足an=4log2bn+3,n∈N.

(1)求an,bn

(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)为奇函数,且f(x)在(﹣∞,0)内是增函数,f(﹣2)=0,则xf(x)>0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率是,过点的动直线与椭圆相交于 两点,当直线平行于轴时,直线被椭圆截得的线段长为

(1)求椭圆的方程;

(2)当时,求直线的方程;

(3)记椭圆的右顶点为,点)在椭圆上,直线轴于点,点与点关于轴对称,直线轴于点.问: 轴上是否存在点,使得为坐标原点)?若存在,求点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,函数f(x)=lg(4﹣x)﹣ 的定义域为集合A,集合B={x|﹣2<x<a}.
(1)求集合UA;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,双曲线 ,若以的长轴为直径的圆与的一条渐近线交于AB两点,且椭圆与该渐近线的两交点将线段AB三等分,则的离心率是

A. B. 3 C. D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣ 为奇函数.
(1)求a的值;
(2)试判断函数f(x)在(﹣∞,+∞)上的单调性,并证明你的结论;
(3)若对任意的t∈R,不等式f[t2﹣(m﹣2)t]+f(t2﹣m+1)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;

(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?

查看答案和解析>>

同步练习册答案