精英家教网 > 高中数学 > 题目详情
若实数x,y满足条件
x+y-2≥0
x-y≤0
y≤3
则z=3x-4y的最大值是(  )
A、-13B、-3C、-1D、1
考点:简单线性规划
专题:计算题,不等式的解法及应用
分析:作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=3x-4y对应的直线进行平移,观察直线在y轴上的截距变化,可得当x=y=1时,z达到最大值-1.
解答: 解:作出不等式组
x+y-2≥0
x-y≤0
y≤3
表示的平面区域,
得到如图的△ABC及其内部,
其中A(-1,3),B(1,1),C(3,3).
设z=F(x,y)=3x-4y,将直线l:z=3x-4y进行平移,
观察直线在y轴上的截距变化,可得当l经点C时,目标函数z达到最大值,
∴z最大值=F(1,1)=-1,
故选:C
点评:本题给出二元一次不等式组,求目标函数的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+cos2x+a(a∈R,a为常数).
(1)求函数的最小正周期;
(2)若x∈[0,  
π
2
]
时,f(x)的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是一个几何体的三视图,则该几何体的体积为(  )
A、16+2πB、8+2π
C、16+πD、8+π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-bx+1.
(1)若f(x)>0的解集是(-1,2),求实数a,b的值;
(2)若f(1)=0,且函数f(x)在(0,+∞)上有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知几何体A-BCDE的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则该几何体的体积V的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-(k-2)x-8在[5,10]上具有单调性,则实数k的取值范围是(  )
A、[32,62]
B、(-∞,32]∪[62,+∞)
C、(32,62)
D、(-∞,32)∪(62,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象是连续不断的,有如下x,f(x)对应值表:
x 1 2 3 4 5 6
f(x) 10 13 c 7 a b
其中a<c<0<b,则函数f(x)在区间[1,6]上零点至少有(  )
A、2个B、3个C、4个D、5个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+3y+1=0和圆x2+y2-2x-3=0相交于A,B两点,则线段AB的垂直平分线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为
 

查看答案和解析>>

同步练习册答案