精英家教网 > 高中数学 > 题目详情
5.已知圆C:(x+2)2+y2=1,若椭圆M以圆心C及(2,0)为左、右焦点,且圆C与椭圆M没有公共点,则椭圆M的离心率的取值范围是$(0,\frac{2}{3})$.

分析 由圆C:(x+2)2+y2=1,可得圆心:C(-2,0).由椭圆M以圆心C及(2,0)为左、右焦点,且圆C与椭圆M没有公共点,可得c=2,a-c>1,即可得出.

解答 解:由圆C:(x+2)2+y2=1,可得圆心:C(-2,0).
由椭圆M以圆心C及(2,0)为左、右焦点,且圆C与椭圆M没有公共点,
∴c=2,a-c>1,
∴a>3.
∴e=$\frac{c}{a}$$<\frac{2}{3}$,又e>0.
则椭圆M的离心率的取值范围是$0<e<\frac{2}{3}$.
故答案为:$(0,\frac{2}{3})$.

点评 本题考查了椭圆的标准方程及其性质、圆的方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.($\frac{i-1}{i+1}$)2016的共轭复数为(  )
A.-1B.1C.1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|≠0,$\overrightarrow{a}$+$\overrightarrow{b}$=$\sqrt{3}$$\overrightarrow{c}$,则向量$\overrightarrow{a}$与向量$\overrightarrow{c}$的夹角是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数a,直线l1:ax+y+1=0,l2:2x+(a+1)y+3=0,则“a=1”是“l1∥l2”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,茎表示得分的十位数,据图可知甲运动员得分的中位数和乙运动员得分的众数之和为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.我国古代秦九韶算法可计算多项式anxn+an-1xn-1+…+a1x+a0的值,它所反映的程序框图如图所示,当x=1时,当多项式为x4+4x3+6x2+4x+1的值为(  )
A.5B.16C.15D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(1+$\frac{2}{{x}^{2}}$)($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)6的展开式中的常数项是(  )
A.12B.20C.26D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F的直线与双曲线相交于A,B两点,当AB⊥x轴,称|AB|为双曲线的通径.若过焦点F的所有焦点弦AB中,其长度的最小值为$\frac{2{b}^{2}}{a}$,则此双曲线的离心率的范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{2}$]C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

同步练习册答案