精英家教网 > 高中数学 > 题目详情
20.已知实数a,直线l1:ax+y+1=0,l2:2x+(a+1)y+3=0,则“a=1”是“l1∥l2”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

分析 对直线斜率及其a分类讨论,利用平行直线的充要条件即可判断出结论.

解答 解:直线l1:ax+y+1=0,l2:2x+(a+1)y+3=0,
a=-1时,上述两条直线不平行,舍去.
a≠-1时,两条直线方程分别化为:y=-ax-1,y=-$\frac{2}{a+1}$x-$\frac{3}{a+1}$.
由l1∥l2?-a=$-\frac{2}{a+1}$,-1$≠-\frac{3}{a+1}$,解得:a=1或-2.
∴“a=1”是“l1∥l2”的充分不必要条件,
故选:B.

点评 本题考查了平行直线的充要条件,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若复数z=$\frac{i}{1+i}$+$\frac{2}{i}$(i为虚数单位),则|z|=(  )
A.$\frac{\sqrt{10}}{2}$B.2C.$\frac{3}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)长轴为4,离心率为$\frac{1}{2}$,点P为椭圆上异于顶点的任意一点,过点P作椭圆的切线l交y轴于点A,直线l′过点P且垂直于l交y轴于B,试判断以AB为直径的圆能否经过定点,若能求出定点坐标,若不能说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x2+x≤0},N={x|2x>$\frac{1}{4}$},则M∪N等于(  )
A.[-1,0]B.(-1,0)C.(-2,+∞)D.(-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知总体的各个个体的值由小到大依次为1,3,4,8,a,c,11,23,53,86,且总体的中位数为10,则 cos $\frac{a+c}{3}$ π 的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C:(x+2)2+y2=1,若椭圆M以圆心C及(2,0)为左、右焦点,且圆C与椭圆M没有公共点,则椭圆M的离心率的取值范围是$(0,\frac{2}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?m∈R,sinm=$\frac{1}{3}$,命题q:?x∈R,x2+mx+1>0恒成立,若p∧q为假命题,则数m的取值范围是(  )
A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,P是椭圆上任一点,过一焦点引∠F1PF2的外角平分线的垂线,垂足为A.若|OA|=2b,则该椭圆的离心率e为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知等差数列{an},设其前n项和为Sn,满足S5=20,S8=-4.
(1)求an与Sn
(2)设cn=anan+1an+2,Tn是数列{cn}的前n项和,若对任意n∈N+,Tn≤$\frac{m-466}{3}$恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案