精英家教网 > 高中数学 > 题目详情
17.我国古代秦九韶算法可计算多项式anxn+an-1xn-1+…+a1x+a0的值,它所反映的程序框图如图所示,当x=1时,当多项式为x4+4x3+6x2+4x+1的值为(  )
A.5B.16C.15D.11

分析 模拟执行程序,可得程序框图的功能是根据算法把多项式改写为(((anx+an-1)x+an-2)x+…+a1)x+a0的形式,当x=1时,再由内到外计算多项式,即可得解.

解答 解:∵模拟执行程序,可得程序框图的功能是根据算法anxn+an-1xn-1+…+a1x+a0=(((anx+an-1)x+an-2)x+…+a1)x+a0求值.
∴x4+4x3+6x2+4x+1=(((x+4)x+6)x+4)x+1,
∴x=1时,由内向外计算,可得多项式x4+4x3+6x2+4x+1的值为:(((1+4)×1+6)×1+4)×1+1=16.
故选:B.

点评 本题主要考查了循环结构的程序框图的应用,考查大数的分解,本题解题的关键是把多项式分解成一次式的形式,再代入数字进行运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.椭圆$\frac{y^2}{5}$+x2=1的长轴长是$2\sqrt{5}$,焦点坐标是(0,±2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x2+x≤0},N={x|2x>$\frac{1}{4}$},则M∪N等于(  )
A.[-1,0]B.(-1,0)C.(-2,+∞)D.(-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C:(x+2)2+y2=1,若椭圆M以圆心C及(2,0)为左、右焦点,且圆C与椭圆M没有公共点,则椭圆M的离心率的取值范围是$(0,\frac{2}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?m∈R,sinm=$\frac{1}{3}$,命题q:?x∈R,x2+mx+1>0恒成立,若p∧q为假命题,则数m的取值范围是(  )
A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知中心在原点、焦点在x轴上的椭圆C上点到两焦点的距离最大值和最小值的差为$\frac{4\sqrt{6}}{3}$,且椭圆过(0,$\frac{2\sqrt{3}}{3}$),单位圆O的切线l与椭圆C相交于A,B两点.
(1)求椭圆方程;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,P是椭圆上任一点,过一焦点引∠F1PF2的外角平分线的垂线,垂足为A.若|OA|=2b,则该椭圆的离心率e为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$=(-$\sqrt{3}$,1),($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图是一个算法的流程图,则输出i的值为4.
 

查看答案和解析>>

同步练习册答案