精英家教网 > 高中数学 > 题目详情
15.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F的直线与双曲线相交于A,B两点,当AB⊥x轴,称|AB|为双曲线的通径.若过焦点F的所有焦点弦AB中,其长度的最小值为$\frac{2{b}^{2}}{a}$,则此双曲线的离心率的范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{2}$]C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

分析 当经过焦点F的直线与双曲线的交点在同一支上,可得双曲线的通径最小;当直线与双曲线的交点在两支上,可得直线的斜率为0时,即为实轴,最小为2a.由2a≥$\frac{2{b}^{2}}{a}$,结合a,b,c的关系和离心率公式,计算即可得到范围.

解答 解:当经过焦点F的直线与双曲线的交点在同一支上,
可得双曲线的通径最小,令x=c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{{b}^{2}}{a}$,
即有最小值为$\frac{2{b}^{2}}{a}$;
当直线与双曲线的交点在两支上,可得直线的斜率为0时,
即为实轴,最小为2a.
由题意可得2a≥$\frac{2{b}^{2}}{a}$,
即为a2≥b2=c2-a2
即有c≤$\sqrt{2}$a,
则离心率e=$\frac{c}{a}$∈(1,$\sqrt{2}$].
故选:B.

点评 本题考查双曲线的离心率的范围,注意讨论双曲线与焦点弦的位置关系,求得最小值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知圆C:(x+2)2+y2=1,若椭圆M以圆心C及(2,0)为左、右焦点,且圆C与椭圆M没有公共点,则椭圆M的离心率的取值范围是$(0,\frac{2}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$=(-$\sqrt{3}$,1),($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{b}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一个袋子里装有6个球,其中红球4个,编号均为1,白球2个,编号均为2,3.(假设取到任何一个球的可能性相同)
(Ⅰ)现依次不放回地任取两个球,求在第一个球是红球的情况下,第二个球也是红球的概率;
(Ⅱ)现甲从袋中任取两个球,记其两球编号之和为m,待甲将球放回袋后,乙再从袋中任取两个球,记其两球编号之和为n,求m<n的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知等差数列{an},设其前n项和为Sn,满足S5=20,S8=-4.
(1)求an与Sn
(2)设cn=anan+1an+2,Tn是数列{cn}的前n项和,若对任意n∈N+,Tn≤$\frac{m-466}{3}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知复数z1=1+ai,z2=3+2i,a∈R,i是虚数单位,若z1z2是实数,则a=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图是一个算法的流程图,则输出i的值为4.
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3,PB=2,PC=1,则三棱锥P-ABC的体积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的顶点在原点,焦点在y轴正半轴上,抛物线上的点P(m,4)到其焦点F的距离等于5.
(1)求抛物线C的方程;
(2)如图,过抛物线焦点F的直线l与抛物线交于A,B两点,与圆M:(x-1)2+(y-4)2=4交于C,D两点,且|AC|=|BD|,求三角形OAB的面积.

查看答案和解析>>

同步练习册答案