精英家教网 > 高中数学 > 题目详情
已知f(x)=|x-a|+3x-2a-1,g(x)=3x-|x+3a-1|.
(Ⅰ)若a=-1,求不等式f(x)≤6的解集;
(Ⅱ)若对任意函数x,不等式f(x)≥g(x)恒成立,求实数a的取值范围.
考点:绝对值不等式的解法,分段函数的应用
专题:不等式的解法及应用
分析:(Ⅰ)由于f(x)=
4x+2,x≥-1
2x,<-1
,故由不等式f(x)≤6,可得
x≥-1
4x+2≤6
①,或
x<-1
2x≤6
②.分别求得①和②的解集,再取并集,即得所求.
(Ⅱ)不等式f(x)≥g(x)恒成立,即|x-a|+|x+3a-1|≥2a+1 恒成立.利用绝对值三角不等式求得|x-a|+|x+3a-1|的最小值为|4a-1|,可得|4a-1|≥2a+1,由此求得a的范围.
解答: 解:(Ⅰ)∵a=-1,f(x)=|x-a|+3x-2a-1=
4x+2,x≥-1
2x,<-1

故由不等式f(x)≤6,可得
x≥-1
4x+2≤6
 ①,或
x<-1
2x≤6
②.
解①求得-1≤x≤1,解②求得 x<-1,
综上可得,不等式的解集为{x|x≤-1}.
(Ⅱ)不等式f(x)≥g(x)恒成立,即|x-a|+3x-2a-1≥3x-|x+3a-1|恒成立,
即|x-a|+|x+3a-1|≥2a+1 恒成立.
由于|x-a|+|x+3a-1|≥|(x-a)-(x+3a-1)|=|4a-1|,
∴|4a-1|≥2a+1,解得a≥1,或 a≤0.
点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若cosα+sinα=-
1
3
,则sin2α=(  )
A、-
1
3
B、
1
3
C、-
8
9
D、
8
9

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
3
+y2=1.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求证:mk=1
(Ⅱ)若|OG|2=|OD|•|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足:|z+1|+|z-1|=2
2

(Ⅰ)求复数z对应的动点在相应的平面直角坐标系中形成的曲线C的标准方程;
(Ⅱ)F1(-1,0),F2(1,0),过点F1的直线l与曲线C交于M,N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x+sin2(x-
π
12
)+sin2(x+
π
12
),△ABC中,a,b,c是A,B,C所对的边.
(Ⅰ)若x∈[-1,1],求函数f(x)的最小值;
(Ⅱ)若a=2
3
,B=
π
4
,f(A)=
7+
3
4
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsin(x+
π
6
)-1.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-
π
6
π
4
]上的最大值和最小值以及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C1:x2+y2=5与抛物线C2:x2=2py(p>0)在第一象限内的交点为R(2,m).
(Ⅰ)求m的值及抛物线C2的方程;
(Ⅱ)若P在抛物线C2在两点O,R之间的部分运动,其中O为坐标原点,直线l过点P且与抛物线C2只有一个公共点,l与圆C1相交于两点A,B,求△OAB的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区交通执法部门从某日上午9时开始对经过当地的200辆超速车辆的速度进行测量并分组,并根据测得的数据制作了频率分布表如下,若以频率作为事件发生的概率.
组号超速分组频数频率
频率
组距
1[0,20%)1760.08 z
2[20%,40%)120.060.30
3[40%,60%)6y0.15
4[60%,80%)40.020.10
5[80%,100%]x0.010.05
(Ⅰ)求x,y,z的值,并估计该地区的超速车辆中超速不低于20%的频率;
(Ⅱ)若在第2,3,4,5组用分层抽样的方法随机抽取12名司机做回访调查,并在这12名司机中任意选3人,求这3人中超速在[20%,80%)之间的人数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,要计算东湖岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两点,现测得AD⊥CD,AD=10km,AB=14km,∠BDA=60°,∠CBD=15°,试求两景点B与C的距离.

查看答案和解析>>

同步练习册答案