精英家教网 > 高中数学 > 题目详情
10.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\sqrt{3}$bcosC+csinB=$\sqrt{3}$a.
(1)求角B的大小;
(2)若函数f(x)=cos2x+$\sqrt{3}$sinxcosx,x∈R,求f(A)的取值范围.

分析 (1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sinCsinB=$\sqrt{3}$cosBsinC,又sinC≠0,可得:tanB=$\sqrt{3}$,结合范围B∈(0,π),可得B的值.
(2)利用三角函数恒等变换的应用可得f(A)=sin(2A+$\frac{π}{6}$)+$\frac{1}{2}$,又A∈(0,$\frac{2π}{3}$),可求2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{3π}{2}$),利用正弦函数的图象和性质即可得解sin(2A+$\frac{π}{6}$)的范围,进而可求f(A)的取值范围.

解答 解:(1)∵$\sqrt{3}$bcosC+csinB=$\sqrt{3}$a,
∴由正弦定理可得:$\sqrt{3}$sinBcosC+sinCsinB=$\sqrt{3}$sinA,
∴$\sqrt{3}$sinBcosC+sinCsinB=$\sqrt{3}$sin(B+C)=$\sqrt{3}$sinBcosC+$\sqrt{3}$cosBsinC,
∴sinCsinB=$\sqrt{3}$cosBsinC,
∵C为三角形内角,sinC≠0,
∴可得:tanB=$\sqrt{3}$,
∴由B∈(0,π),可得:B=$\frac{π}{3}$.
(2)∵f(x)=cos2x+$\sqrt{3}$sinxcosx=$\frac{1+cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$,
∴f(A)=sin(2A+$\frac{π}{6}$)+$\frac{1}{2}$,
∵A∈(0,$\frac{2π}{3}$),2A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{3π}{2}$),
∴sin(2A+$\frac{π}{6}$)∈(-1,1],
∴f(A)=sin(2A+$\frac{π}{6}$)+$\frac{1}{2}$∈(-$\frac{1}{2}$,$\frac{3}{2}$].

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质的应用,考查了数形结合思想和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知a,b,c均为正实数,求证:
(1)$\frac{1}{a}$+$\frac{1}{b}$≥$\frac{4}{a+b}$;
(2)$\frac{1}{2a}$+$\frac{1}{2b}$+$\frac{1}{2c}$≥$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:x2-2y2=a2(a>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆与双曲线C在第一象限的交点为P,过P向x轴作垂线,垂足为H,则$\frac{{|{PH}|}}{{|{{F_1}{F_2}}|}}$=(  )
A.$\frac{2}{5}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,在直三棱柱ABC-A'B'C'中,AC⊥BC,BC=BB'=2,AC=4,点M是线段AB'的中点,则三棱锥M-ABC的外接球的体积是(  )
A.36πB.$\frac{{20\sqrt{5}}}{3}$πC.$\sqrt{6}$πD.$\frac{4}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1(a>0,b>0)的两焦点为F1,F2,A是该双曲线上一点,满足:2|AF1|-2|AF2|=|F1F2|,直线AF2交双曲线C于另一点 B,且5$\overrightarrow{{A}{F_2}}$=3$\overrightarrow{{A}{B}}$,则直线 AF2的斜率为(  )
A.$±\frac{{\sqrt{11}}}{33}$B.$±\sqrt{3}$C.$±\frac{{\sqrt{3}}}{3}$D.$±3\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列双曲线的标准方程.
(1)与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦点,且过点(3$\sqrt{2}$,2)的双曲线;
(2)以椭圆3x2+13y2=39的焦点为焦点,以直线y=±$\frac{x}{2}$为渐近线的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=2-$\frac{3}{\sqrt{{x}^{2}-4x+5}}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数$\frac{2-ai}{1+i}$(a∈R)是纯虚数,i是虚数单位,则a的值是(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若关于x的不等式|x+3|+|x-1|>a恒成立,则a的取值范围是(-∞,4).

查看答案和解析>>

同步练习册答案