精英家教网 > 高中数学 > 题目详情
若点A(3,1),F为抛物线y2=2x的焦点,点M在抛物线上移动,则使|MA|+|MF|取最小值时,点M的坐标是______.
如图所示:
设点M到准线x=-
1
2
的距离为d=|MN|,
由抛物线定义知,d=|MN|+|MF|,则|MA|+|MF|=|MA|+|MN|,
由图可知,当点N、M、A三点共线时|MA|+|MF|取最小值,
此时,点M的坐标为(
1
2
,1),
故答案为:(
1
2
,1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线的顶点在原点,以x轴为对称轴,经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=-2px(p>0)上横坐标为-3的一点到准线的距离为4.
(1)求p的值;
(2)设动直线y=x+b与抛物线C相交于A、B两点,问在直线l:y=2上是否存在与b的取值无关的定点M,使得∠AMB被直线l平分?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

M是抛物线y2=4x上的一点,F是抛物线的焦点,以Fx为始边,FM为终边的∠xFM=60°,则|FM|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P是抛物线y2=16x上的一点,它到对称轴的距离为12,F是抛物线的焦点,则|PF|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(-1,1)作直线,若它与抛物线y2=4x有且只有一个公共点,这样的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l1:4x-3y+8=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A.
12
5
B.3C.2D.
37
16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则
|MN|
|AB|
的最大值为(  )
A.
3
3
B.1C.
2
3
3
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(0,2),抛物线C:y2=2px(p>0)的焦点为F,线段PF与抛物线C的交点为M,过M作抛物线准线的垂线,垂足为Q.若∠PQF=90°,则p=______.

查看答案和解析>>

同步练习册答案