精英家教网 > 高中数学 > 题目详情
(理)已知z=x+yi,x,y∈R,i是虚数单位.若复数
z
1+i
+i是实数,则|z|的最小值为(  )
A、0
B、
5
2
C、5
D、
2
考点:复数求模
专题:数系的扩充和复数
分析:利用复数的运算法则和复数为实数的充要条件可得x=y+2,再利用复数模的计算公式和二次函数的单调性即可得出.
解答: 解:∵复数
z
1+i
+i=
(x+yi)(1-i)
(1+i)(1-i)
+i
=
x+y+(y-x)i
2
+i
=
x+y
2
+
y-x+2
2
i
是实数,
y-x+2
2
=0,得到x=y+2.
∴|z|=
x2+y2
=
(y+2)2+y2
=
2(y+1)2+2
2
,当且仅当y=-1,x=1取等号.
∴|z|的最小值为
2

故选:D.
点评:本题考查了复数的运算法则和复数为实数的充要条件、复数模的计算公式和二次函数的单调性等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={2,0,1,4},B={-1,0,2},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
)=
3
7
,则cos2
π
2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(
π
6
)=a,则sin(
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边上有一点P(-5,12),则cosα的值是(  )
A、
12
13
B、
5
13
C、-
5
13
D、-
12
13

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,cos2
A
2
=
1
2
+
b
2c
,则△ABC的形状为(  )
A、正三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

将“新、五、河”填入如图所示的4×4小方格内,每格内只填入一个汉字,且任意两个汉字既不同行也不同列,则不同的填写方法有(  )
A、288B、144
C、576D、96

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
1+i
i
,则|z|=(  )
A、
2
B、2
C、1
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线2mx-(m2+1)y-
m
=0倾斜角的取值范围(  )
A、[0,π)
B、[0,
π
4
]∪[
4
,π)
C、[0,
π
4
]
D、[0,
π
4
]∪(
π
2
,π)

查看答案和解析>>

同步练习册答案