精英家教网 > 高中数学 > 题目详情
曲线y=x-
1
x
在点(1,0)处的切线方程为(  )
A.y=2x-2B.y=x-1C.y=0D.y=-x+1
y=x-
1
x

∴y′=1+
1
x2

则y′|x=1=2即曲线在点(1,0)处的切线斜率为2,
∴曲线在点(1,0)处的切线方程为y-0=2(x-1),
即2x-y-2=0
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x).
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率k
1
2
恒成立,求实数a的最小值.
(Ⅲ)是否存在实数m,使得函数y=g(
2a
x2+1
)+m-1的图象与y=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-3x2+2x,若过f(x)图象上一点P(x0,y0)(x0≠0)的切线为l:y=kx,求k的值和P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-3x2+1,则在曲线y=f(x)的切线中,斜率最小的切线方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
lim
x→4
f(x)-f(4)
x-4
=-2
,则
lim
t→0
f(4-t)-f(4)
2t
=(  )
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)在区间(a,b)内可导,其导函数y=f'(x)的图象如图所示,则函数f(x)在区间(a,b)内有(  )
A.一个极大值,一个极小值
B.一个极大值,两个极小值
C.两个极大值,一个极小值
D.两个极大值,两个极小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x3-x在点(1,0)处的切线与直线x+ay=1垂直,则实数a的值为(  )
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
x4
4
-
x3
3
的极值点为(  )
A.0B.-1C.0或1D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a>0,b>0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则a+b等于(  )
A.2B.3C.6D.9

查看答案和解析>>

同步练习册答案