精英家教网 > 高中数学 > 题目详情
已知
lim
x→4
f(x)-f(4)
x-4
=-2
,则
lim
t→0
f(4-t)-f(4)
2t
=(  )
A.4B.-4C.1D.-1
令x-4=t,则x=4+t,
lim
x→4
f(x)-f(4)
x-4
=-2

lim
t→0
f(4+t)-f(4)
t
=-2

lim
t→0
f(4-t)-f(4)
2t
=
lim
t→0
f(4+t)-f(4)
-2t
=-
1
2
lim
t→0
f(4+t)-f(4)
t
=-
1
2
×(-2)=1

故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-a
x
-ax+ln
x
(a∈R)

(1)当a=0时,求f(x)在x=
1
2
处切线的斜率;
(2)当0≤a≤
1
2
时,讨论f(x)的单调性;
(3)设g(x)=x2-2bx+3当a=
1
4
时,若对于任意x1∈(0,2),存在x2∈[1,2]使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x3的切线的斜率等于1,则这样的切线有(  )
A.1条B.2条C.3条D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=ax3+bx2+cx的图象如图所示,且f(x)在x=x0与x=-1处取得极值,给出下列判断:
①f(1)+f(-1)=0;②f(-2)>0;③函数y=f'(x)在区间(-∞,0)上是增函数.其中正确的判断是______.(写出所有正确判断的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

根据导数的定义f′(x1)等于(  )
A.
lim
x1→0
f(x1)-f(x0)
x1x0
B.
lim
△x→0
f(x1)-f(x0)
△x
C.
lim
△x→0
f(x1+△x)-f(x1)
△x
D.
lim
x1→0
f(x1+△x)-f(x1)
△x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x-
1
x
在点(1,0)处的切线方程为(  )
A.y=2x-2B.y=x-1C.y=0D.y=-x+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
lim
n→∞
2n2
2+n
-an)=b,则常数a、b的值分别为(  )
A.a=2,b=-4B.a=-2,b=4C.a=
1
2
,b=-4
D.a=-
1
2
,b=
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+a(x2-x)
(1)若a=-1,求证f(x)有且仅有一个零点;
(2)若对于x∈[1,2],函数f(x)图象上任意一点处的切线的倾斜角都不大于
π
4
,求实数a的取值范围;
(3)若f(x)存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
eax
x2+1
,a∈R

(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)单调区间.

查看答案和解析>>

同步练习册答案