精英家教网 > 高中数学 > 题目详情
根据导数的定义f′(x1)等于(  )
A.
lim
x1→0
f(x1)-f(x0)
x1x0
B.
lim
△x→0
f(x1)-f(x0)
△x
C.
lim
△x→0
f(x1+△x)-f(x1)
△x
D.
lim
x1→0
f(x1+△x)-f(x1)
△x
根据导数的定义f'(x1)=
lim
△x→0
f(x1+△x)-f(x1)
△x

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知曲线C:y=3x-x3及点P(2,2),过点P向曲线C引切线,则切线的条数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x3-2x+1在点(1,2)处的切线方程是(  )
A.y=x+1B.y=-x+1C.y=2x-2D.y=-2x+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)在x=x0处的导数为4,则
lim
△x→0
f(x0+2△x)-f(x0)
△x
=(  )
A.4B.8C.2D.-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在曲线y=x2上切线斜率为1的点是(  )
A.(0,0)B.(
1
2
1
4
)
C.(
1
4
1
16
)
D.(2,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
lim
x→4
f(x)-f(4)
x-4
=-2
,则
lim
t→0
f(4-t)-f(4)
2t
=(  )
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=sinx在x=
π
2
处的切线方程是(  )
A.y=0B.y=x+1C.y=xD.y=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-
3
2
x2+2x+5

(Ⅰ)求f(x)的单调区间;
(Ⅱ)若曲线y=f(x)与y=2x+m有三个不同的交点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案