精英家教网 > 高中数学 > 题目详情

已知函数f(x)=3x-b(2≤x≤4)的图象过点(2,1),则F(x)=[f-1(x)]2-f-1(x2)的值域为________.

[2,5]
分析:由函数f(x)=3x-b(2≤x≤4)的图象过点(2,1),可求得b值,从而得到f(x)的解析式,根据f(x)的值域可得f-1(x)的定义域,进而可求得F(x)的定义域,F(x)=[f-1(x)]2-f-1(x2)=-(+2)=,由log3x∈[0,1],即可求得F(x)的值域.
解答:由函数f(x)=3x-b(2≤x≤4)的图象过点(2,1),得32-b=1,解得b=2.
则f(x)=3x-2,f-1(x)=log3x+2,
F(x)=[f-1(x)]2-f-1(x2)=-(+2)=
由2≤x≤4得,f(x)∈[1,9].所以f-1(x)的定义域为[1,9],
,解得1≤x≤3,
所以F(x)的定义域为[1,3].
则log3x∈[0,1],1≤≤4,2≤F(x)≤5.
所以函数F(x)的值域为[2,5].
故答案为:[2,5].
点评:本题考查函数解析式的求解及函数的值域问题,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案