分析 边OF2的中点为$\frac{c}{2}$,把$x=\frac{c}{2}$代入椭圆方程可得:$\frac{{c}^{2}}{4{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,解得|y|=$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$.可得$\frac{1}{2}×\frac{c}{2}$×$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$=$\sqrt{3}$,|y|=$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$=$\frac{c}{2}$×$\sqrt{3}$,又a2=b2+c2.联立解得即可得出.
解答 解:边OF2的中点为$\frac{c}{2}$,把$x=\frac{c}{2}$代入椭圆方程可得:$\frac{{c}^{2}}{4{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,解得|y|=$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$.
∴$\frac{1}{2}×\frac{c}{2}$×$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$=$\sqrt{3}$,|y|=$\frac{b\sqrt{4{a}^{2}-{c}^{2}}}{2a}$=$\frac{c}{2}$×$\sqrt{3}$,又a2=b2+c2.
联立解得b2=2$\sqrt{3}$,a2=2$\sqrt{3}$+4,
∴椭圆的标准方程为:$\frac{x^2}{{2\sqrt{3}+4}}+\frac{y^2}{{2\sqrt{3}}}=1$.
故答案为:$\frac{x^2}{{2\sqrt{3}+4}}+\frac{y^2}{{2\sqrt{3}}}=1$.
点评 本题考查了椭圆的标准方程及其性质、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | an=2n-1 | B. | an=2n-1 | C. | an=2n-1 | D. | an=n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 降雨量 | 70 | 110 | 140 | 160 | 200 | 220 |
| 频率 | $\frac{1}{20}$ | $\frac{4}{20}$ | $\frac{2}{20}$ |
| A. | 0.4 | B. | 0.3 | C. | 0.2 | D. | 0.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com