精英家教网 > 高中数学 > 题目详情
11.如图,已知△ABC中,D为BC的中点,AE=$\frac{1}{2}$EC,AD,BE交于点F,设$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$分别表示向量$\overrightarrow{AB}$,$\overrightarrow{EB}$;
(2)若$\overrightarrow{AF}$=t$\overrightarrow{AD}$,求实数t的值.

分析 (1)利用向量的线性运算,即可用$\overrightarrow{a}$,$\overrightarrow{b}$分别表示向量$\overrightarrow{AB}$,$\overrightarrow{EB}$;
(2)若$\overrightarrow{AF}$=t$\overrightarrow{AD}$,利用$\overrightarrow{FB}$,$\overrightarrow{EB}$共线,求实数t的值.

解答 解:(1)由题意,D为BC的中点,且$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AC}$,
∵$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AD}$,
∴$\overrightarrow{AB}$=2$\overrightarrow{b}$-$\overrightarrow{a}$,
∴$\overrightarrow{EB}$=$\overrightarrow{AB}$-$\overrightarrow{AE}$=2$\overrightarrow{b}$-$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{a}$=-$\frac{4}{3}$$\overrightarrow{a}$+2$\overrightarrow{b}$;
(2)∵$\overrightarrow{AF}$=t$\overrightarrow{AD}$=t$\overrightarrow{b}$,
∴$\overrightarrow{FB}$=$\overrightarrow{AB}$-$\overrightarrow{AF}$=-$\overrightarrow{a}$+(2-t)$\overrightarrow{b}$,
∵$\overrightarrow{EB}$=-$\frac{4}{3}$$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{FB}$,$\overrightarrow{EB}$共线,
∴$\frac{-1}{-\frac{4}{3}}=\frac{2-t}{2}$,
∴t=$\frac{1}{2}$.

点评 本题考查向量的线性运算,考查向量共线条件的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=ax3-bx-4,其中a,b为常数.若f(-2)=2,则f(2)的值为(  )
A.-2B.-4C.-6D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角梯形ABCD 中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$ AB⊥BC,如图,把△ABD沿BD翻折,使得平面ABD⊥平面BCD.

(Ⅰ)求证:CD⊥AB;
(Ⅱ)在线段BC上是否存在点N,使得AN与平面ACD所成角为60°?若存在,求出$\frac{BN}{BC}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数$f(x)={log_{\sqrt{3}}}$(x+a)的图象上.
(1)求实数a的值;
(2)当方程|g(x+2)-2|=2b有两个不等实根时,求b的取值范围;
(3)设an=g(n+2),bn=$\frac{{{a_n}-1}}{{{a_n}•{a_{n+1}}}},n∈{N^*}$,求证:b1+b2+b3+…+bn<$\frac{1}{3}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对大于或等于2的自然数,有如下分解方式:
22=1+3   
32=1+3+5       
42=1+3+5+7
23=3+5   
33=7+9+11      
43=13+15+17+19
根据上述分解规律,若n2=1+3+5+…+19,m3(m∈N*)的分解中最小的数是43,则m+n=17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知,焦点在x轴上的椭圆的上下顶点分别为B2、B1,经过点B2的直线l与以椭圆的中心为顶点、以B2为焦点的抛物线交于A、B两点,直线l与椭圆交于B2、C两点,且|$\overrightarrow{A{B_2}}$|=2|$\overrightarrow{B{B_2}}$|.直线l1过点B1且垂直于y轴,线段AB的中点M到直线l1的距离为$\frac{9}{4}$.设$\overrightarrow{CB}$=λ$\overrightarrow{B{B_2}}$,则实数λ的取值范围是(  )
A.(0,3)B.(-$\frac{1}{2}$,2)C.(-$\frac{2}{3}$,4)D.(-$\frac{5}{9}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为了了解某学校1200名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况.根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在66~79g的人数为(  )
A.360B.336C.300D.280

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示).
(1)由图象,求函数y=kx+b的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试用销售单价x表示毛利润S,并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知不等式ax2+ax+(a-1)≤0.
(1)当a=$\frac{1}{3}$,求不等式的解集;
(2)不等式的解集是不为空集,则a的取值范围.

查看答案和解析>>

同步练习册答案