精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ax3-bx-4,其中a,b为常数.若f(-2)=2,则f(2)的值为(  )
A.-2B.-4C.-6D.-10

分析 因为f(-2)=2,求f(2)的值,利用函数的奇偶性求解.

解答 解:∵f(-2)=2,即f(-2)=a(-2)3+b•(-2)-4=2,
可得:8a+2b=-6,
那么:f(2)=8a+2b-4=-10.
故选D.

点评 本题考查了函数的奇偶性的性质的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)是定义在[-2,2]上的增函数,且f(1-m)<f(m),则实数m的取值范围($\frac{1}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且$\overrightarrow{a}⊥\overrightarrow{b}$,向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{c}$|的范围为(  )
A.[1,1+$\sqrt{2}$]B.[2-$\sqrt{2}$,2+$\sqrt{2}$]C.[$\sqrt{2},2\sqrt{2}$]D.[3-2$\sqrt{2}$,3+2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.点A(1,2,2)关于原点O的对称点A',则AA'的距离为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=(16x-16-x)log2|x|的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,S5=-5,且a3,a4,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_{2n+1}}{a_{2n+3}}}}({n∈{N^*}})$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:$\lim_{n→∞}\frac{{n-3{n^2}}}{{5{n^2}+1}}$=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等边△ABC中,D,E分别是AB,AC边上的中点,那么以B,C为焦点且过点D,E的双曲线的离心率是$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知△ABC中,D为BC的中点,AE=$\frac{1}{2}$EC,AD,BE交于点F,设$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$分别表示向量$\overrightarrow{AB}$,$\overrightarrow{EB}$;
(2)若$\overrightarrow{AF}$=t$\overrightarrow{AD}$,求实数t的值.

查看答案和解析>>

同步练习册答案