精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且$\overrightarrow{a}⊥\overrightarrow{b}$,向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{c}$|的范围为(  )
A.[1,1+$\sqrt{2}$]B.[2-$\sqrt{2}$,2+$\sqrt{2}$]C.[$\sqrt{2},2\sqrt{2}$]D.[3-2$\sqrt{2}$,3+2$\sqrt{2}$]

分析 由$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=0.可设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(x,y).由向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,可得(x-1)2+(y-1)2=4.其圆心C(1,1),半径r=2.利用|OC|-r≤|$\overrightarrow{c}$|=$\sqrt{{x}^{2}{+y}^{2}}$≤|OC|+r即可得出.

解答 解:由$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=0,
可设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(x,y),
由向量$\overrightarrow{c}$满足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=2,
∴|(x-1,y-1)|=2,
∴$\sqrt{{(x-1)}^{2}{+(y-1)}^{2}}$=2,即(x-1)2+(y-1)2=4,
其圆心C(1,1),半径r=2,
∴|OC|=$\sqrt{2}$
∴2-$\sqrt{2}$≤|$\overrightarrow{c}$|=$\sqrt{{x}^{2}{+y}^{2}}$≤2+$\sqrt{2}$.
故选:B.

点评 本题考查了向量的垂直与数量积的关系、数量积的运算性质、点与圆上的点的距离大小关系,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知角φ的终边经过点P(3,-4),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于$\frac{π}{2}$,则$f(\frac{π}{4})$=(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}的前n项和为Sn,若${S_n}=p•{3^n}-2$,则p等于(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n-m的值(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆锥的母线长为L,过顶点的最大截面的面积为$\frac{1}{2}{L}^{2}$,则圆锥底面半径与母线长的比$\frac{r}{L}$的取值范围是(  )
A.0$<\frac{r}{L}<\frac{1}{2}$B.$\frac{1}{2}≤\frac{r}{L}<1$C.0$<\frac{r}{L}<\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}≤\frac{r}{L}<1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在公比为2的等比数列{an}中,a2与a5的等差中项是$9\sqrt{3}$.
(1)求a1的值;
(2)若函数$y=|{a_1}|sin(\frac{π}{4}x+φ)(|φ|<π)$的一部分图象如图所示,M(-1,|a1|),N(3,-|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求sin(2φ-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:关于x的一元二次方程x2+2mx+2m2-$\frac{5}{2}$m+1=0有两个实根,命题q:x2+(1-4m)x+4m2-1>0 解集为R.若命题“p∧q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=ax3-bx-4,其中a,b为常数.若f(-2)=2,则f(2)的值为(  )
A.-2B.-4C.-6D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角梯形ABCD 中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$ AB⊥BC,如图,把△ABD沿BD翻折,使得平面ABD⊥平面BCD.

(Ⅰ)求证:CD⊥AB;
(Ⅱ)在线段BC上是否存在点N,使得AN与平面ACD所成角为60°?若存在,求出$\frac{BN}{BC}$的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案