精英家教网 > 高中数学 > 题目详情
如果实数x、y满足
x-y+3≥0
x+y-1≥0
x≤1
,若直线y=k(x-1)将可行域分成面积相等的两部分,则实数k的值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,根据直线将平面区域分成面积相等的两部分,得到直线过AB的中点,求出相应的坐标即可得到k的值.
解答: 解:作出不等式组对应平面区如图(三角形ABC部分):
∵直线y=k(x-1)过定点C(1,0),
∴C点也在平面区域ABC内,
要使直线y=k(x-1)将可行域分成面积相等的两部分,
则直线y=k(x-1)必过线段AB的中点D.
x=1
x-y+3=0
,解得
x=1
y=4
,即B(1,4),
x-y+3=0
x+y-1=0
,解得
x=-1
y=2
,即A(-1,2),
∴AB的中点D(
1-1
2
2+4
2
),即D(0,3),
将D的坐标代入直线y=k(x-1)得3=-k,
解得k=-3,
故答案为:-3
点评:本题主要考查二元一次不等式组表示平面区域以及三角形的面积的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=
5x2+9x+4
x2-1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3sin(2x-
π
6
)在区间[0,
π
2
]上的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A是角α终边上一点,且A点的坐标为(
3
5
4
5
),则
1
2sinαcosα+cos2α
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是
 
(写出所有正确结论的序号)
(1)常数列既是等差数列,又是等比数列;
(2)若直角三角形的三边a、b、c成等差数列,则a、b、c之比为3:4:5;
(3)若三角形ABC的三内角A、B、C成等差数列,则B=60°;
(4)若数列{an}的前n项和为Sn=n2+n+1,则{an}的通项公式an=2n+1;
(5)若数列{an}的前n项和为Sn=3n-1,则{an}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+
2x-3
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若a,b∈R+,a≠b,则a3+b3>a2b+ab2
②若a,b,c∈R,则a2+b2+c2≥ab+bc+ca;
③若a>0,b>0,a+b=2,则
a
+
b
2

④若
x+y>4
xy>4
,则
x>2
y>2

⑤函数y=
x2+2014
x2+2013
的最小值等于2.
其中正确命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

某市有7条南北向街道,5条东西向街道.图中共有m个矩形,从A点走到B点最短路线的走法有n种,则m,n的值分别为(  )
A、m=90,n=210
B、m=210,n=210
C、m=210,n=792
D、m=90,n=792

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且cos2C+3cosC=1,c=
7
,又S△ABC=
3
3
2

(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的值.

查看答案和解析>>

同步练习册答案