精英家教网 > 高中数学 > 题目详情
求函数y=
5x2+9x+4
x2-1
的值域.
考点:函数的值域
专题:函数的性质及应用
分析:用分离常数法化简函数解析式为y=5+
9
x-1
,考虑分母不为0,即可求出函数的值域.
解答: 解:∵y=
5x2+9x+4
x2-1

=
5(x2-1)+9x+9
x2-1

=5+
9
x-1

又x2-1≠0,
即x≠±1,
∴y≠5且y≠
1
2

∴函数的值域是{y|y≠5且y≠
1
2
}.
点评:本题考查了求函数的值域问题,解题时用分离常数法化简函数解析式,注意分母不为0,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且
AC
BC
=0,|BC|=2|AC|.
(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得|QB|2-|QA|2=2?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作⊙O:x2+y2=
4
3
的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:
1
3m2
+
1
n2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)离心率为
2
2
,且椭圆的长轴比焦距长2
2
-2

(1)求椭圆C的方程;
(2)过点M(0,-
1
3
)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:定点A(-1,0),点B是⊙F:(x-1)2+y2=8(F为圆心)上的动点,线段AB的垂直平分线交BF于点G,记点G的轨迹为曲线E.
(1)求曲线E的方程;
(2)设过点A的直线l与曲线E交于P、Q两点.在x轴上是否存在一点M,使得
MP
MQ
恒为常数?若存在,求出M点的坐标和这个常数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆W中心在原点,焦点在x轴上,离心率e=
3
2
,过椭圆的右焦点且垂直于长轴的弦长为1.
(1)求椭圆W的标准方程;
(2)椭圆上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1
y1
,求3x1-4y1的取值范围.
(3)设椭圆W的左右顶点分别为A、B,点S是椭圆W上位于x轴上方的动点,直线AS、BS与直线l:x=
10
3
分别交于M、N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=x与直线l:y=kx+
3
4
,试问C上能否存在关于直线l对称的两点?若存在,求出实数k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
G=
ab
是a,G,b成等比数列的充分不必要条件;
②若角α,β满足cosαcosβ=1,则sin(α+β)=0;
③“若x2+y2≠0,则x,y不全为零”的否命题;
④“若m>0,则x2+x-m=0有实根”的逆否命题;
⑤命题“存在x0∈R,2x0<0”的否定是“对任意的x0∈R,2x0>0”.
其中正确的命题的序号是
 
(把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x
3a
+
y
4a
≤1
x≥0
y≥0
,若z=
x+2y+3
x+1
的最小值为
3
2
,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x、y满足
x-y+3≥0
x+y-1≥0
x≤1
,若直线y=k(x-1)将可行域分成面积相等的两部分,则实数k的值为
 

查看答案和解析>>

同步练习册答案