精英家教网 > 高中数学 > 题目详情
15.已知f(x)是定义在R上的偶函数,并满足f(x+2)=-f(x),当2≤x<3时,f(x)=x,则f(-$\frac{11}{2}$)=$\frac{5}{2}$.

分析 根据已知可得:f(x)是以4为周期的周期函数,进而可得f(-$\frac{11}{2}$)=f(-$\frac{3}{2}$)=f($\frac{5}{2}$).

解答 解:∵f(x+2)=-f(x),
f(x+4)=-f(x+2)=f(x),
即f(x)是以4为周期的周期函数,
又∵f(x)是定义在R上的偶函数,当2≤x<3时,f(x)=x,
∴f(-$\frac{11}{2}$)=f(-$\frac{3}{2}$)=f($\frac{5}{2}$)=$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题考查的知识点是函数的奇偶性,函数的周期性,函数求值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求下列函数的导数.
(1)f(x)=(x3+1)(2x2+8x-5);
(2)f(x)=xtanx-$\frac{2}{cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.
(Ⅰ)图中格点四边形DEFG对应的S,N,L分别是   ;
(Ⅱ)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=51,L=20,则S=   (用数值作答).(  )
A.3,1,6;60B.3,1,6;70C.3,2,5;60D.3,2,5;70

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题P:函数y=loga(1+2x)在定义域上单调递减;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果一扇形的弧长为2πcm,半径等于2cm,则扇形所对圆心角为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图1的频率分布直方图,从左到右各组的频数依次记为A1,A2,A3,A4,A5
(1)求图中a的值并估算该企业产品质量指标的平均值;
(2)如图2是统计图中各组频数的一个算法流程图,求输出的结果S;
(3)从质量指标值分布在[80,90),[110,120)的产品中随机抽取2件产品,求所抽取两件产品的质量指标值之差大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$上有一点P,F1、F2是椭圆的左、右焦点,若△F1PF2为直角三角形,则这样的点P有6个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.
(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(ii)若这8位同学的数学、物理分数事实上对应如下表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数r=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}}$;回归直线的方程是:$\widehaty=bx+a$,其中对应的回归估计值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline y-b\overline x$,$\widehat{y_i}$是与xi对应的回归估计值.
参考数据:$\overline x=77.5,\overline y=84.875,{\sum_{i=1}^8{({x_i}-\overline x)}^2}≈1050,{\sum_{i=1}^8{({y_i}-\overline y)}^2}$≈457,$\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)≈688,\sqrt{1050}≈32.4,\sqrt{457}≈21.4,\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$cosxcosy-sinxsiny=\frac{1}{2},sin2x-sin2y=\frac{2}{3}$,则sin(x-y)=$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案