精英家教网 > 高中数学 > 题目详情
5.将函数$f(x)=sin(\frac{π}{2}-x)$的图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴的方程是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{2π}{3}$D.$x=\frac{5π}{6}$

分析 利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.

解答 解:将函数$f(x)=sin(\frac{π}{2}-x)$=cosx的图象上所有点向左平行移动$\frac{π}{6}$个单位长度,
得到函数g(x)=cos(x+$\frac{π}{6}$)的图象,
令x+$\frac{π}{6}$=kπ,求得x=kπ-$\frac{π}{6}$,k∈Z,
则g(x)图象的一条对称轴的方程为x=$\frac{5π}{6}$,
故选:D.

点评 本题主要考查诱导公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.偶函数f(x)在(0,+∞)单调递减,f(1)=0,不等式f(x)>0的解集为(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数a,b满足-2≤a≤2,-2≤b≤2,则函数y=$\frac{1}{3}$x3-$\frac{\sqrt{2}}{2}$ax2+bx-1有三个单调区间的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈Z||x-1|<3},B={x|x2+2x-3<0},则A∩B=(  )
A.(-2,1)B.(1,4)C.{2,3}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知m>0,n>0,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是[2+2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\sqrt{3}$sin2x+cos2x,则下列表述正确的是(  )
A.f(x)在(-$\frac{π}{3}$,-$\frac{π}{6}$)单调递减B.f(x)在($\frac{π}{6}$,$\frac{π}{3}$)单调递增
C.f(x)在(-$\frac{π}{6}$,0)单调递减D.f(x)在(0,$\frac{π}{6}$)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i是虚数单位,若复数$\frac{z}{1+i}=2i$满足,则复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{x^2}{k}+\frac{y^2}{5}=1$的一个焦点坐标为(2,0),则k的值为(  )
A.1B.3C.9D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρcos2θ-4sinθ=0,P点的极坐标为$({3,\frac{π}{2}})$,在平面直角坐标系中,直线l经过点P,斜率为$\sqrt{3}$
(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

同步练习册答案