分析 由函数y和直线y=tx联立,求得三交点,再由数量积的坐标表示,可得函数f(t),再由导数求得单调区间,可得极值.
解答 解:由y=x(x-1)(x-3)和y=tx联立,
可得x=0和x2-4x+3-t=0,
由题意可得△≥0,即16-4(3-t)≥0,
解得t≥-1,
解得x=2±$\sqrt{1+t}$,
即有P(2+$\sqrt{1+t}$,t(2+$\sqrt{1+t}$)),
Q(2-$\sqrt{1+t}$,t(2-$\sqrt{1+t}$)),
则f(t)=|$\overrightarrow{OP}•\overrightarrow{OQ}$|=(2$+\sqrt{1+t}$)(2-$\sqrt{1+t}$)+t2(2$+\sqrt{1+t}$)(2-$\sqrt{1+t}$)
=3-t+t2(3-t)=-t3+3t2-t+3(t≥-1),
f′(t)=-3t2+6t-1,
当1-$\frac{\sqrt{6}}{3}$<t<1+$\frac{\sqrt{6}}{3}$时,f′(t)>0,f(t)递增;
当-1≤t<1-$\frac{\sqrt{6}}{3}$或t>1+$\frac{\sqrt{6}}{3}$时,f′(t)<0,f(t)递减.
即有x=1-$\frac{\sqrt{6}}{3}$处取得极小值,且为4-$\frac{4\sqrt{6}}{9}$;
x=1+$\frac{\sqrt{6}}{3}$处取得极大值,且为4+$\frac{4\sqrt{6}}{9}$.
点评 本题考查向量的数量积的坐标表示,同时考查导数的运用:求单调区间和极值,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| 文科 | 理科 | 合计 | |
| 男生 | 52 | 98 | 150 |
| 女生 | 90 | 60 | 150 |
| 合计 | 42 | 158 | 300 |
| A. | 学生的性别与是否报读文科、理科有关 | |
| B. | 学生的性别与是否报读文科、理科无关 | |
| C. | 在犯错误的概率不超过0.001的前提下认为学生的性别与是否报读文科、理科有关 | |
| D. | 在犯错误的概率不超过0.001的前提下认为学生的性别与是否报读文科、理科无关 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com