| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
分析 由已知条件求得tanα=2,把要求的式子利用同角三角函数的基本关系化为=$\frac{tanα-1}{tanα+2}$,从而求得结果.
解答 解:∵α为第三象限角,且$\sqrt{\frac{1-sinα}{1+sinα}}$=$\sqrt{\frac{(1-sinα)(1-sinα)}{(1+sinα)(1-sinα)}}$=$\frac{1-sinα}{-cosα}$,
∴$\sqrt{\frac{1-sinα}{1+sinα}}$+$\frac{1}{cosα}$=2等价于$\frac{sinα}{cosα}$=2,
∴tanα=2,
∴$\frac{sinα-cosα}{sinα+2cosα}$=$\frac{tanα-1}{tanα+2}$=$\frac{1}{4}$,
故本题选A.
点评 本题主要考查三角函数的恒等变换以及化简求值,注意第三象限角的三角函数值的符号.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com