精英家教网 > 高中数学 > 题目详情
5.已知△ABC的三个内角∠A,∠B,∠C所对边分别为a,b,c,分别根据下列条件,求∠C,c,∠B(精确到0.1)
(1)a=4,b=5,∠A=60°;
(2)a=4,b=3,∠A=45°;
(3)a=4,b=2,∠A=30°;
(4)a=4,b=2,∠A=75°.

分析 利用正弦定理求出B,根据三角形的内角和求出C,在利用正弦定理计算c.

解答 解:(1)由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,即$\frac{4}{\frac{\sqrt{3}}{2}}=\frac{5}{sinB}$,解得sinB=$\frac{5\sqrt{3}}{8}$>1.
∴三角形无解.
(2)由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,即$\frac{4}{\frac{\sqrt{2}}{2}}=\frac{3}{sinB}$,解得sinB=$\frac{3\sqrt{2}}{8}$,
∵b<a,∴B<45°,∴B≈32°,
∴C=180°-45°-32°=103°.
∵$\frac{a}{sinA}=\frac{c}{sinC}$,即$\frac{4}{sin45°}=\frac{c}{sin103°}$,∴c=$\frac{4sin103°}{sin45°}$≈5.5.
(3)由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,即$\frac{4}{\frac{1}{2}}=\frac{2}{sinB}$,解得sinB=$\frac{1}{4}$,
∵b<a,∴B<30°,∴B≈14.5°,
∴C=180°-30°-14.5°=135.5°.
∵$\frac{a}{sinA}=\frac{c}{sinC}$,即$\frac{4}{\frac{1}{2}}$=$\frac{c}{sin135.5°}$,∴c=8sin135.5°≈5.6.
(4))由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,即$\frac{4}{sin75°}=\frac{2}{sinB}$,解得sinB=$\frac{\sqrt{2}+\sqrt{6}}{8}$,
∵b<a,∴B<75°,∴B≈28.9°,
∴C=180°-75°-28.9°=76.1°.
∵$\frac{a}{sinA}=\frac{c}{sinC}$,即$\frac{4}{sin75°}=\frac{c}{sin76.1°}$,∴c=$\frac{4sin76.1°}{sin75°}$≈4.0.

点评 本题考查了正弦定理,解三角形,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若正实数x,y满足3x+y=5xy,则4x+3y取得最小值时y的值为(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α为第三象限角,且$\sqrt{\frac{1-sinα}{1+sinα}}$+$\frac{1}{cosα}$=2,则$\frac{sinα-cosα}{sinα+2cosα}$的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若(3x-1)6=a0+a1x+a2x2+…+a5x5+a6x6,则a1+a2+a3+a4+a5+a6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已$\overrightarrow{a}$,$\overrightarrow{b}$为平面内两个互相垂直的单位向量,若向量$\overrightarrow{c}$满足$\overrightarrow{c}$+$\overrightarrow{a}$=λ($\overrightarrow{c}$+$\overrightarrow{b}$)(λ∈R),则|$\overrightarrow{c}$|的最小值为(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知棱长为1的正方体ABCD-A1B1C1D1
(1)求三棱锥C1-BCD的体积;
(2)求证:平面C1BD⊥平面A1B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前4项为-$\frac{1}{2}$,$\frac{3}{5}$,-$\frac{3}{5}$,$\frac{10}{17}$,则数列{an}的一个通项公式是an=(-1)n$\frac{n(n+1)}{2({n}^{2}+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求曲线y=sinx在下列各点处的切线的斜率:
(1)x=$\frac{π}{3}$;
(2)x=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知首项为$\frac{1}{2}$的等比数列{an}是递减数列,且a1,$\frac{3}{2}$a2,2a3成等差数列;数列{bn}的前n项和为Sn,且Sn=n2+n.n∈N*(1)求数列{an},{bn}的通项公式;
(2)若cn=$\frac{{b}_{n+1}}{2}$•log2an,求数列{$\frac{1}{{c}_{n}}$}的前n项和Tn

查看答案和解析>>

同步练习册答案