精英家教网 > 高中数学 > 题目详情

【题目】已知圆经过两点,且圆心在直线.

(1)求圆的方程

(2)从原点向圆作切线,求切线方程及切线长.

【答案】(1) (或写成:)(2).

【解析】

(1) 解法一: 设圆的方程为,两点代入得: ,根据圆的一般方程的圆心为: ,代入,

联立方程即可求出答案.

解法二:设根据题意,分析可得圆的圆心是线段的垂直平分线与直线的交点,先求出线段的垂直平分线的方程,与直线联立可得圆的圆心的坐标,在由两点间距离公式: ,代入圆的标准方程: 即可得出答案.

(2) 解法一:过原点的直线中,当斜率不存在时,不与圆相切,当斜率存在时,可设直线方程为:,直线线切,联立方程: 将其化为关于的一元二次方程,由题意可知此方程的,解得 ,即可求出切线方程及切线长.

解法二: 过原点的直线中,当斜率不存在时,不与圆相切,当斜率存在时,可设直线方程为:.因为直线与圆相切,故圆心到直线的距离等于半径,根据点到直线的距离公式: 可求得圆的圆心到:的距离为1,可解得 ,即可求出切线方程及切线长.

(1)解法一:设圆的方程为

由题意:

又圆心在直线

由①②③解得:

圆的方程为:(或写成:)

解法二:由题意,圆心在的中垂线上,

又在已知直线上,

解得圆心坐标为

于是半径

所求圆的方程为:;

(2)解法一:过原点的直线中,当斜率不存在时,不与圆相切

当斜率存在时,设直线方程为

代入

解得

即切线方程为.

对应切线长为.

解法二:过原点的直线中,当斜率不存在时,不与圆相切;

当斜率存在时,设直线方程为

因为直线与圆相切,故圆心到直线的距离等于半径,

根据点到直线的距离公式:可得

解得.即切线方程为.

对应切线长为.

综上所述: 切线方程为,切线长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}各项均不相同,a1=1,定义,其中nk∈N*.

(1)若,求

(2)若bn+1(k)=2bn(k)对均成立,数列{an}的前n项和为Sn

(i)求数列{an}的通项公式;

(ii)若kt∈N*,且S1SkS1StSk成等比数列,求kt的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)过点e是自然对数的底数)作函数图象的切线l,求直线l的方程;

2)求函数在区间)上的最大值;

3)若,且对任意恒成立,求k的最大值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,记.

1)求b1b2的值;

2)证明:数列{bn}是等比数列;

3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是( )

A. 命题,则的逆命题是真命题

B. 命题存在的否定是:任意

C. 命题“pq”为真命题,则命题“p”和命题“q”均为真命题

D. 已知,则的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,AB⊥平面PADAB∥CDPD=ADEPB的中点,FDC上的点且DF=ABPH△PAD边上的高.

1)证明:PH⊥平面ABCD

2)若PH=1AD=FC=1,求三棱锥E-BCF的体积;

3)证明:EF⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,底面为直角梯形,分别为中点,且.

(1)平面

(2)若为线段上一点,且平面,求的值;

(3)求二面角的大小.

查看答案和解析>>

同步练习册答案