精英家教网 > 高中数学 > 题目详情
2.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点分别为A、B,渐近线分别为l1、l2,点P在第一象限内且在l1上,若PA⊥l2,PB∥l2,则该双曲线的离心率为2.

分析 求出双曲线的顶点和渐近线方程,设P(x,y),再由两直线垂直和平行的条件,得到a,b的关系式,再由离心率公式计算即可得到.

解答 解:依题意有A(-a,0),B(a,0),渐近线方程分别为l1:y=$\frac{b}{a}$x,l2:y=-$\frac{b}{a}$x,
设P(x,y),则
由PB∥l2得$\frac{y}{x-a}$=-$\frac{b}{a}$,因为点P在直线y=$\frac{b}{a}$x上,于是解得P点坐标为P($\frac{a}{2}$,$\frac{b}{2}$),
因为PA⊥l2,所以$\frac{y-0}{x-(-a)}$•(-$\frac{b}{a}$)=-1,即$\frac{b}{3a}$•(-$\frac{b}{a}$)=-1,所以b2=3a2
因为a2+b2=c2,所以有c2=4a2,即c=2a,得e=2.
故答案为:2.

点评 本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程和离心率的求法,运用两直线垂直的条件和平行的条件是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知cos(α-$\frac{π}{6}$)=$\frac{{\sqrt{2}}}{2}$,则sin(2α+$\frac{π}{6}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知幂函数f(x)的图象过点(2,4),若函数g(x)=f(x)-ax+2+a在(-∞,-1)上是减函数,则a的取值范围a≥-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列命题:
①若“p或q”是假命题,则“?p且?q”是真命题;
②若实系数关于x的二次不等式,ax2+bx+c≤0的解集为∅,则必有a>0且△≤0;
③|x|>|y|?x2>y2
④$\left\{\begin{array}{l}x>2\\ y>2\end{array}\right.?\left\{\begin{array}{l}x+y>4\\ xy>4\end{array}\right.$.
其中真命题的是①③.(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow a=(2,1),\overrightarrow b=(3,x)(x<0)$,若$(2\overrightarrow a-\overrightarrow b)⊥\overrightarrow b$,则x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线y=1+$\sqrt{4-{x}^{2}}$(x∈[-2,2])与直线y=k(x-2)+4有两个公共点时,k的取值范围是(  )
A.(0,$\frac{5}{12}$)B.[$\frac{1}{4}$,$\frac{1}{3}$)C.($\frac{5}{12}$,+∞)D.($\frac{5}{12}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有11个不同的公共点,则实数k的取值范围为(  )
A.(2$\sqrt{2}$-2,2$\sqrt{6}$-4)B.($\sqrt{3}$+2,$\sqrt{3}$+$\sqrt{6}$)C.(2$\sqrt{2}$+2,2$\sqrt{6}$+4)D.(2$\sqrt{6}$-4,4$\sqrt{3}$-6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,已知A、B、C是长轴为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且AC⊥BC,|BC|=2|AC|.
(1)求椭圆E的方程;
(2)设P为椭圆E上异于其顶点的任一点,以OP为直径的圆与圆x2+y2=$\frac{4}{3}$相交于点M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:$\frac{1}{3{m}^{2}}$+$\frac{1}{{n}^{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知A={x|x<-2或x>5},B={x|a≤x<a+2},若A?B,则实数a的取值范围是a≤-4或a>5.

查看答案和解析>>

同步练习册答案