精英家教网 > 高中数学 > 题目详情

【题目】双曲线的方程是y2=1.

(1)直线l的倾斜角为,被双曲线截得的弦长为,求直线l的方程;

(2)过点P(3,1)作直线l′,使其被双曲线截得的弦恰被P点平分,求直线l′的方程.

【答案】(1)yx±5(2)3x-4y-5=0

【解析】

1)结合直线l的倾斜角,设出该直线方程,代入双曲线方程,结合弦长公式计算参数,即可。(2分别设出交点坐标,结合点P为该2个交点的中点,建立方程,将交点坐标代入双曲线方程,相减,计算直线斜率,计算方程,即可。

(1)设直线l的方程为yxm,代入双曲线方程,得3x2+8mx+4(m2+1)=0,

Δ=(8m)2-4×3×4(m2+1)=16(m2-3)>0,

m2>3.

设直线l与双曲线交于A(x1y1)、B(x2y2)两点,

x1x2=-mx1x2.

由弦长公式|AB|=|x1x2|,得

,

,即m=±5,满足m2>3,

∴直线l的方程为yx±5.

(2)设直线l′与双曲线交于A′(x3y3)、B′(x4y4)两点,

P(3,1)为AB′的中点,则x3x4=6,y3y4=2.

=4,=4,

两式相减得(x3x4)(x3x4)-4(y3y4)(y3y4)=0,

l′的方程为y-1=(x-3),即3x-4y-5=0.

把此方程代入双曲线方程,整理得5y2-10y=0,

满足Δ>0,

即所求直线l′的方程为3x-4y-5=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值.

(1)求实数的值;

(2)设,其导函数为,若的图象交轴于两点,设线段的中点为,试问是否为的根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)=x2-2mx+4在[2,+∞)上单调递增,命题q:关于x的不等式mx2+4(m-2)x+4>0的解集为R.若pq为真命题,pq为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,且当时,,则方程上所有根的和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其对称轴为,且

1)求的解析式;

2)若对任意及任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区中央广场由两部分组成,一部分是边长为的正方形,另一部分是以为直径的半圆,其圆心为.规划修建的条直道 将广场分割为个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点在半圆弧上, 分别与 相交于点 .(道路宽度忽略不计)

(1)若经过圆心,求点的距离;

(2)设 .

①试用表示的长度;

②当为何值时,绿化区域面积之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为 ().

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点),且两个焦点的坐标依次为(1,0)和(1,0).

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,求当为何值时,直线与以原点为圆心的定圆相切,并写出此定圆的标准方程

查看答案和解析>>

同步练习册答案