【题目】双曲线的方程是-y2=1.
(1)直线l的倾斜角为,被双曲线截得的弦长为,求直线l的方程;
(2)过点P(3,1)作直线l′,使其被双曲线截得的弦恰被P点平分,求直线l′的方程.
【答案】(1)y=x±5(2)3x-4y-5=0
【解析】
(1)结合直线l的倾斜角,设出该直线方程,代入双曲线方程,结合弦长公式,计算参数,即可。(2)分别设出交点坐标,结合点P为该2个交点的中点,建立方程,将交点坐标代入双曲线方程,相减,计算直线斜率,计算方程,即可。
(1)设直线l的方程为y=x+m,代入双曲线方程,得3x2+8mx+4(m2+1)=0,
Δ=(8m)2-4×3×4(m2+1)=16(m2-3)>0,
∴m2>3.
设直线l与双曲线交于A(x1,y1)、B(x2,y2)两点,
则x1+x2=-m,x1x2=.
由弦长公式|AB|=|x1-x2|,得
,
∴=,即m=±5,满足m2>3,
∴直线l的方程为y=x±5.
(2)设直线l′与双曲线交于A′(x3,y3)、B′(x4,y4)两点,
点P(3,1)为A′B′的中点,则x3+x4=6,y3+y4=2.
由=4,=4,
两式相减得(x3+x4)(x3-x4)-4(y3+y4)(y3-y4)=0,
∴=,
∴l′的方程为y-1=(x-3),即3x-4y-5=0.
把此方程代入双曲线方程,整理得5y2-10y+=0,
满足Δ>0,
即所求直线l′的方程为3x-4y-5=0.
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为, .
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)在曲线上求一点,使它到直线: (为参数)的距离最短,写出点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:函数f(x)=x2-2mx+4在[2,+∞)上单调递增,命题q:关于x的不等式mx2+4(m-2)x+4>0的解集为R.若p∨q为真命题,p∧q为假命题,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某小区中央广场由两部分组成,一部分是边长为的正方形,另一部分是以为直径的半圆,其圆心为.规划修建的条直道, , 将广场分割为个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点在半圆弧上, 分别与, 相交于点, .(道路宽度忽略不计)
(1)若经过圆心,求点到的距离;
(2)设, .
①试用表示的长度;
②当为何值时,绿化区域面积之和最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:经过点(,),且两个焦点,的坐标依次为(1,0)和(1,0).
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设,是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,求当为何值时,直线与以原点为圆心的定圆相切,并写出此定圆的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com