【题目】定义在上的函数满足,,且当时,,则方程在上所有根的和为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC—A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AC=AA1=2,点M,N分別为A1B和B1C1的中点.
(1)求异面直线A1B与NC所成角的余弦值;
(2)求A1B与平面NMC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段, …后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,补全频率分布直方图,并估计该校学生的数学成绩的中位数.
(2)从被抽取的数学成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.
(3)假设从全市参加高一年级期末考试的学生中,任意抽取个学生,设这四个学生中数学成绩为80分以上(包括分)的人数为(以该校学生的成绩的频率估计概率),求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的方程是-y2=1.
(1)直线l的倾斜角为,被双曲线截得的弦长为,求直线l的方程;
(2)过点P(3,1)作直线l′,使其被双曲线截得的弦恰被P点平分,求直线l′的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数是定义在 上的偶函数,当时, ).
(1)当时,求的解析式;
(2)若,试判断的上单调性,并证明你的结论;
(3)是否存在,使得当时, 有最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一三个班级抽取10名学生参加调查.已知三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:
①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;
③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.
关于上述样本的下列结论中,正确的是( )
A. ①③都可能为分层抽样 B. ②④都不能为分层抽样
C. ①④都可能为系统抽样 D. ②③都不能为系统抽样
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①如果平面外一条直线与平面内一条直线平行,那么;
②过空间一定点有且只有一条直线与已知平面垂直;
③如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直;
④若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面.
其中真命题的个数为
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com