精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数满足,且当时,,则方程上所有根的和为(

A.B.C.D.

【答案】C

【解析】

利用题意可得出函数的图象关于直线对称,关于点对称,并且周期为,作出图象得知,函数的图象与函数上没有交点,并且函数上的图象关于点对称,且函数在区间上的图象也关于点对称,然后利用对称性得出两个函数交点横坐标之和.

,即,所以,函数是以为周期的周期函数.

,则函数的图象关于直线对称.

,则函数的图象关于点对称,易知函数的图象也关于点对称,如下图所示:

函数的图象与函数上没有交点,并且函数上的图象关于点对称,且函数在区间上的图象也关于点对称,两个函数在区间上共有个公共点,且这些公共点呈现对关于点对称,因此,方程上所有根的和为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC—A1B1C1中,侧棱与底面垂直,∠BAC90°,ABAC=AA12,点M,N分別为A1B和B1C1的中点.

(1)求异面直线A1B与NC所成角的余弦值;

(2)求A1B与平面NMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是梯形,在棱上且.

(1)证明:平面

(2)若平面,异面直线所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段 后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,补全频率分布直方图,并估计该校学生的数学成绩的中位数.

(2)从被抽取的数学成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率.

(3)假设从全市参加高一年级期末考试的学生中,任意抽取个学生,设这四个学生中数学成绩为80分以上(包括分)的人数为(以该校学生的成绩的频率估计概率),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五面体中, ,平面平面..

(1)证明:直线平面

(2)已知为棱上的点,试确定点位置,使二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的方程是y2=1.

(1)直线l的倾斜角为,被双曲线截得的弦长为,求直线l的方程;

(2)过点P(3,1)作直线l′,使其被双曲线截得的弦恰被P点平分,求直线l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在 上的偶函数,当时, ).

(1)当时,求的解析式;

(2)若,试判断的上单调性,并证明你的结论;

(3)是否存在,使得当时, 有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一三个班级抽取10名学生参加调查.已知三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

关于上述样本的下列结论中,正确的是( )

A. ①③都可能为分层抽样 B. ②④都不能为分层抽样

C. ①④都可能为系统抽样 D. ②③都不能为系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①如果平面外一条直线与平面内一条直线平行,那么

②过空间一定点有且只有一条直线与已知平面垂直;

③如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直;

④若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面.

其中真命题的个数为

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案