精英家教网 > 高中数学 > 题目详情

【题目】2018年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一三个班级抽取10名学生参加调查.已知三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

关于上述样本的下列结论中,正确的是( )

A. ①③都可能为分层抽样 B. ②④都不能为分层抽样

C. ①④都可能为系统抽样 D. ②③都不能为系统抽样

【答案】A

【解析】

根据题意,结合三种抽样方法得到数据的特点是:系统抽样方法得到的数据每个数据与前一个数据的差都是10,分层抽样方法得到的数据在1--40之间的有4,41—70之间的有3,71—100之间的有3个;依次分析四组数据,即可得出结果.

对于①,既满足系统抽样的数据特征,又满足分层抽样的数据特征,所以可能是分层抽样或系统抽样;

对于②,只满足分层抽样的数据特征,所以可能是分层抽样;

对于③,既满足系统抽样的数据特征,又满足分层抽样的数据特征,所以可能是分层抽样或系统抽样;

对于④,只满足分层抽样的数据特征,所以可能是分层抽样;

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】边长为2的正三角形ABC中,点D,E,G分别是边AB,AC,BC的中点,连接DE,连接AGDE于点现将沿DE折叠至的位置,使得平面平面BCED,连接A1G,EG.

证明:DE∥平面A1BC

求点B到平面A1EG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,且当时,,则方程上所有根的和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区中央广场由两部分组成,一部分是边长为的正方形,另一部分是以为直径的半圆,其圆心为.规划修建的条直道 将广场分割为个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点在半圆弧上, 分别与 相交于点 .(道路宽度忽略不计)

(1)若经过圆心,求点的距离;

(2)设 .

①试用表示的长度;

②当为何值时,绿化区域面积之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为 ().

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足在直线上.

1)求数列的通项公式;

(2),求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有一个根,则实数m的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如下表:(平均每天锻炼的时间单位:分钟)

将学生日均课外体育运动时间在上的学生评价为“课外体育达标”.

平均每天锻炼的时间(分钟)

总人数

20

36

44

50

40

10

请根据上述表格中的统计数据填写下面列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?

课外体育不达标

课外体育达标

合计

20

110

合计

从上述200名学生中,按“课外体育达标”、“课外体育不达标”分层抽样,抽取4人得到一个样本,再从这个样本中抽取2人,求恰好抽到一名“课外体育不达标”学生的概率.

参考公式:,其中.

参考数据:

查看答案和解析>>

同步练习册答案