【题目】若数列同时满足:①对于任意的正整数, 恒成立;②对于给定的正整数, 对于任意的正整数恒成立,则称数列是“数列”.
(1)已知判断数列是否为“数列”,并说明理由;
(2)已知数列是“数列”,且存在整数,使得, , , 成等差数列,证明: 是等差数列.
【答案】(1)是(2)见解析
【解析】试题分析:(1)根据定义验证两个条件是否成立,由于函数为分段函数,所以分奇偶分别验证(2)根据定义数列隔项成等差,再根据单调性确定公差相等,最后求各项通项,根据通项关系得数列通项,根据等差数列证结论
试题解析:(1)当为奇数时, ,所以.
.
当为偶数时, ,所以.
.
所以,数列是“数列”.
(2)由题意可得: ,
则数列, , , 是等差数列,设其公差为,
数列, , , 是等差数列,设其公差为,
数列, , , 是等差数列,设其公差为.
因为,所以,
所以,
所以①,②.
若,则当时,①不成立;
若,则当时,②不成立;
若,则①和②都成立,所以.
同理得: ,所以,记.
设 ,
则
.
同理可得: ,所以.
所以是等差数列.
【另解】 ,
,
,
以上三式相加可得: ,所以,
所以 ,
,
,
所以,所以,
所以,数列是等差数列.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线.
(1)求直线所过定点A的坐标;
(2)求直线被圆C所截得的弦长最短时直线的方程及最短弦长;
(3)已知点M(-3,4),在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数, 试求所有满足条件的点N的坐标及该常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果一个数列从第二项起,后一项与前一项的和相等且为同一常数,这样的数列叫“等和数列”,这个常数叫公和.给出下列命题:
①“等和数列”一定是常数数列;
②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列;
③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列;
④数列是“等和数列”且公和,则其前项之和;
其中,正确的命题为__________.(请填出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为2。
(1)求椭圆C的方程;
(2)椭圆C上是否存在一点P,使得当l绕F转到某一位置时,有成立?若存在,求点P的坐标与直线l的方程;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中, 为正三角形,平面平面, , , .
(Ⅰ)求证:平面平面;
(Ⅱ)求三棱锥的体积;
(Ⅲ)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生参加4门学科的学业水平测试,每门得等级的概率都是,该学生各学科等级成绩彼此独立.规定:有一门学科获等级加1分,有两门学科获等级加2分,有三门学科获等级加3分,四门学科全获等级则加5分,记表示该生的加分数, 表示该生获等级的学科门数与未获等级学科门数的差的绝对值.
(1)求的数学期望;
(2)求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)当a=3时,求A∩B;
(2)若a>0,且A∩B=,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com