精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex(ax+2)(e为自然对数的底数,a∈R为常数).对于函数g(x),h(x),若存在常数k,b,对于任意x∈R,不等式g(x)≤kx+b≤h(x)都成立,则称直线y=kx+b是函数g(x),h(x)的分界线.
(Ⅰ)若a=-1,求f(x)的极值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)设a=2,试探究函数g(x)=-x2+4x+2与函数f(x)是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)若a=-1,求函数的导数,即可求出f(x)的极值;
(Ⅱ)先求出函数f(x)的导函数,然后讨论a与0的大小关系,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数f(x)的单调区间;
(Ⅲ)假设存在,令x=0,求出m的值,从而kx+1≥-x2+4x+2恒成立,然后求函数的恒成立问题即可得到结论.
解答: 解:(Ⅰ)若a=-1,则f(x)=ex(-x+2),
f′(x)=ex(-x+1),
当x>1时,f′(x)<0,函数单调递减,
当x<1,f′(x)>0,函数单调递增,
故当x=1时函数f(x)取得极大值f(1)=e;
(Ⅱ)f′(x)=ex(ax+a+2),
当a>0时,f′(x)>0?ax>-a-2,即x>-1-
2
a

函数f(x)在区间(-1-
2
a
,+∞)上是增函数,
由f′(x)<0,得x<-1-
2
a

在区间(-∞,-1-
2
a
)上是减函数;
当a=0时.f′(x)>0,函数f(x)是区间(-∞,+∞)上的增函数;
当a<0时,f′(x)>0?ax>-a-2即x<-1-
2
a

函数f(x)在区间(-∞,-1-
2
a
)上是增函数,在区间(-1-
2
a
,+∞)上是减函数.
(Ⅲ)当a=2时,f(x)=ex(2x+2),
若存在,g(x)≤kx+b≤h(x)
则-x2+4x+2≤kx+m≤ex(2x+2)恒成立,
令x=0,则2≤m≤2,所以m=2,
因此:kx+2≥-x2+4x+2恒成立,即x2+(k-4)x≥0恒成立,
由△≤0得到(k-4)2≤0:即k=4
现在只要判断ex(2x+2)≥4x+2是否恒成立,
设ϕ(x)=ex(2x+2)-(4x+2),
因为:ϕ′(x)=ex(2x+4)-4,
当x>0时,ex>1,2x+4>4,ϕ′(x)>0,
当x<0时,ex(2x+2)<2ex<2,ϕ′(x)<0,
所以ϕ(x)≥ϕ(0)=0,即ex(2x+2)≥4x+2恒成立,
所以函数f(x)与函数g(x)=-x2+4x+2存在“分界线”.
点评:本题主要考查了函数恒成立问题,以及利用导数研究函数的单调性等基础知识,考查综合利用数学知识分析问题、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P(x,y)在椭圆
(x-2)2
4
+(y-1)2=1上,则x+y的最大值为(  )
A、3+
5
B、5+
5
C、5
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求方程f(x)=0在(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根在区间(  )
A、(1.25,1.5)
B、(1,1.25)
C、(1.5,2)
D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a16+a17+a18=a9=-36,其前n项和为Sn
(1)求Sn的最小值,并求出Sn
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3,E是DD1的中点
(1)求证:D1B∥面ACE
(2)求异面直线A1B与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0.
(Ⅰ)令ω=1,求函数F(x)=f(x)+f(x-
π
3
)的单调递增区间;
(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移
π
6
个单位,再往上平移1个单位,得到函数y=g(x)的图象.若函数y=g(x)在区间[m,10π]上有20个零点:a1,a2,a3,…,a20,求实数m的取值范围并求a1+a2+a3+…+a19+a20的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx+ax,g(x)=-x2-2,
(1)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=1时,求函数f(x)在[m,m+3](m>0)上的最小值和最大值;
(3)证明:对一切x∈(0,+∞),都有lnx+1>
1
ex
-
2
ex
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),求向量
AB
CD
方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

用列举法表示集合{(x,y)|0≤x≤2,0≤y<2,x,y∈Z}.

查看答案和解析>>

同步练习册答案