精英家教网 > 高中数学 > 题目详情
设函数f(x)=
m
n
,其中向量
m
=(cosx,
3
cosx),
n
=(2cosx,2sinx).
(1)求函数f(x)的单调增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,a=
3
,b+c=3,求△ABC的面积.
考点:正弦定理,平面向量数量积的运算
专题:三角函数的图像与性质,解三角形
分析:(1)把向量的坐标代入函数f(x)整理求得函数f(x)的解析式,进而利用正弦函数的性质求得其增区间.
(2)根据f(A)的值求得A,然后利用余弦定理求得bc的值,最后用三角形面积公式求得答案.
解答: 解:(1)∵
m
=(cosx,
3
cosx)
n
=(2cosx,2sinx)

f(x)=
m
n
=2cos2x+2
3
sinxcosx=1+cos2x+
3
sin2x
=2(sin2x•
3
2
+cos2x•
1
2
)+1=2sin(2x+
π
6
)+1

∵当-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
时,
即kπ-
π
3
≤x≤
π
6
+kπ(k∈Z)时,函数f(x)单调增,
∴函数f(x)的单调增区间为[-
π
3
+kπ,
π
6
+kπ](k∈Z)

(2)由(1)得f(A)=2sin(2A+
π
6
)+1=2

sin(2A+
π
6
)=
1
2

∵0<A<π,
2A+
π
6
=
6
,解得A=
π
3

在△ABC中,由余弦定理a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA,
即3=9-2bc-bc,bc=2,
S△ABC=
1
2
bcsinA=
1
2
×2×
3
2
=
3
2
点评:本题主要考查了正弦定理和余弦定理的运用.考查了学生基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是曲线y=2x2-1上的动点,定点A(0,-1),且点P不同于点A,若M点满足
PM
=2
MA
,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(1-2a)x-lnx(a∈R).
(1)当a>0时,求函数f(x)的单调增区间;
(2)当a<0时,求函数f(x)在区间[
1
2
,1]上的最小值;
(3)记函数y=f(x)图象为曲线C,设点A(x1,x2),B(x2,y2)是曲线C上不同的两点,点M为线段AB的中点,过点M作x轴的垂线交曲线C于点N.试问:曲线C在点N处的切线是否平行于直线AB?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C所对的边,且
a
cosA
=
b
2cosB
=
c
3cosC

(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
m
x
+2(m为实常数).
(Ⅰ)若函数y=f(x)在区间[2,+∞)上是增函数,试用函数单调性的定义求实数m的取值范围;
(Ⅱ)设m<0,若不等式f(x)≤kx在x∈[
1
2
,1]有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点A(cosθ,
2
sinθ),B(sinθ,0),其中θ∈R.
(Ⅰ)当θ=
3
,求向量
AB
的坐标;
(Ⅱ)当θ∈[0,
π
2
]时,求|
AB
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年3月1日,部分高校在湖南省城长沙举行自主招生笔试,岳阳、长沙两城之间开通了高速列车,假设岳阳到长沙每天8:00-9:00,9:00-10:00两个时间段内各有一趟列车从岳阳到长沙(两车发车情况互不影响),岳阳发车时间及其概率如下表所示:
发车时间 8:10 8:30 8:50 9:10 9:30 9:50
概率
1
6
1
2
1
3
1
6
1
2
1
3
若甲、乙两位同学打算从岳阳到长沙参加自主招生,假设他们到达岳阳火车站候车的时间分别是周五8:00和周六8:20.(只考虑候车时间,不考虑其它因素)
(1)设乙同学候车所需时间为随机变量X,求X的分布列和数学期望;
(2)求甲、乙二人候车时间相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

1
0
1-(x-1)2
-2x)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为
 

查看答案和解析>>

同步练习册答案