精英家教网 > 高中数学 > 题目详情
2.已知A={1,2,3,4…13,14},函数f(x)的定义域为{1,2,3},值域是集合A的含有三个元素的子集,且满足f(2)-f(1)≥3,f(3)-f(2)≥3,则这样不同的函数f(x)的共有120个.

分析 根据不等式的关系得到,分别讨论f(1),f(2),f(3)的值即可得到结论.

解答 解:∵f(2)-f(1)≥3,f(3)-f(2)≥3,
∴f(x)是一一映射.
∵f(3)-f(1)≥6,
∴1≤f(1)≤f(3)-6≤14-6=8,
∵f(2)-f(1)≥3,f(3)-f(2)≥3,
∴f(2)≥3+f(1)=4,f(3)≥f(2)+3≥f(1)+6=7,
则1≤f(1)≤8,f(2)≥3+f(1),f(3)≥f(2)+3,
若f(1)=8,则f(2)=11,f(3)=14,此时有1个,
若f(1)=7,则f(2)=10或11,f(3)=13,14,此时有1+2个,

若f(1)=1,则f(2)=4,5,6,7,8,9,10,11,此时f(3)对应有7,8,9,10,11,12,13,14,此时有1+2+3+4+5+6+7+8,
共有1+(1+2)+(1+2+3)+…+(1+2+3+4+5+6+7+8)=1+3+6+10+15+21+28+36=120,
故答案为:120

点评 本题主要考查函数的定义域和值域的关系,利用不等式的关系进行讨论是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.非负实数x、y满足ln(x+y-1)≤0,则关于x-y的最大值和最小值分别为(  )
A.2和1B.2和-1C.1和-1D.2和-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆的中心在坐标原点,对称轴为坐标轴,且过点P($\frac{3}{2}$,-$\frac{5}{2}$),Q(-$\sqrt{3}$,$\sqrt{5}$)两点,求此椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,椭圆C上一动点到右焦点F距离的最大值为2+$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)过点D(0,-2)作直线l与曲线C交于A,B两点,求△OAB面积的最大值,并求此时的直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过点P(3,3)向圆O:x2+y2=4作两条切线PA,PB,求:
(1)线段PA的长.
(2)弦AB所在的直线方程.
(3)问是否存在过点P的直线L交圆O于M,N两点,使得点M是线段PN的中点,若存在,求出直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算曲线y=x2+1和y=4-x2,以及直线x=1和x=-1所围成的区域面积,所求面积=$\frac{14}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:${C}_{8}^{1}$+${C}_{8}^{2}$+${C}_{8}^{3}$+${C}_{8}^{4}$+${C}_{8}^{5}$+${C}_{8}^{6}$+${C}_{8}^{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若x2cosα+y2sinα=1表示椭圆,则α属于(2kπ,$\frac{π}{4}+2kπ$)∪($\frac{π}{4}+2kπ$,$\frac{π}{2}+2kπ$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.三个数cos$\frac{5}{2}$,sin$\frac{1}{10}$,-cos$\frac{11}{6}$的大小系是-cos$\frac{11π}{6}$<cos$\frac{5}{2}$<sin$\frac{1}{10}$.

查看答案和解析>>

同步练习册答案