精英家教网 > 高中数学 > 题目详情
12.非负实数x、y满足ln(x+y-1)≤0,则关于x-y的最大值和最小值分别为(  )
A.2和1B.2和-1C.1和-1D.2和-2

分析 作出不等式组对应的平面区域,利用z的几何意义进行求解即可.

解答 解:由题意得$\left\{\begin{array}{l}{0<x+y-1≤1}\\{x≥0,y≥0}\end{array}\right.$,
作出不等式组对应的平面区域如图:
设z=x-y,由z=x-y,得y=x-z表示,斜率为1纵截距为-z的一组平行直线,
平移直线y=x-z,当直线y=x-z经过点C(2,0)时,直线y=x-z的截距最小,此时z最大,
最大为zmax=2-0=2
当直线经过点A(0,2)时,此时直线y=x-z截距最大,z最小.
此时zmin=0-2=-2.
故选:D

点评 本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.本题难度较大,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.(x2-$\frac{1}{2x}$)6的展开式中,常数项是(  )
A.$\frac{15}{16}$B.$\frac{5}{4}$C.-$\frac{15}{16}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=$\frac{5i}{2+i}$的共轭复数是(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{BA}•\overrightarrow{BC},sinA=\frac{{\sqrt{5}}}{3}$.
(Ⅰ)求sinC的值;
(Ⅱ)设D为AC的中点,S△ABC=8$\sqrt{5}$,求中线BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,给出下列命题:
①“a2+b2>c2”是“C角为锐角”的充要条件;
②“△ABC为锐角三角形”是“a5+b5=c5“的既不充分也不必要条件;
③“a${\;}^{\frac{5}{4}}$+b${\;}^{\frac{5}{4}}$=c${\;}^{\frac{5}{4}}$”是“△ABC为钝角三角形”的充分不必要条件;
④若命题p:?A>B,sinA>sinB,则¬p:?A>B,sinA<sinB.
其中所有正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校对高一1班同学按照“国家学生体质健康数据测试”项目按百分制进行了测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.
(1)请求出70-80分数段的人数;
(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人为一组,若选出的两人成绩差大于20,则称该组为“搭档组”,试求选出的两人为“搭档组”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在边长为1的等边△ABC中,E为AC上一点,且AC=4AE,P为BE上一点且满足$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m>0,n>0).则$\frac{1}{m}$+$\frac{1}{n}$取最小值时,|$\overrightarrow{AP}$|=$\frac{\sqrt{7}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设x,y,z∈[0,1],求证:
(1)x(1-y)+y(1-x)≤1;
(2)x(1-y)+y(1-z)+z(1-x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知A={1,2,3,4…13,14},函数f(x)的定义域为{1,2,3},值域是集合A的含有三个元素的子集,且满足f(2)-f(1)≥3,f(3)-f(2)≥3,则这样不同的函数f(x)的共有120个.

查看答案和解析>>

同步练习册答案