【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an;
(Ⅱ)求数列{n2an}的前n项和Tn;
(Ⅲ)对任意n∈N*,使得 恒成立,求实数λ的最小值.
【答案】(Ⅰ)(Ⅱ) (Ⅲ)
【解析】
(Ⅰ)要证明数列{nan}是等比数列,应先求其通项公式,然后用等比数列定义证明即可。由等比数列通向公式可求得数列{nan}的通项公式,进而可求数列{an}的通项an;(Ⅱ)要求数列{n2an}的前n项和Tn,应根据(Ⅰ)的结果求其通项公式,由通项公式的特点可用错位相减法求数列从第二项到第n项的和,再加第一项可得结果;(Ⅲ) 根据(Ⅰ)的结果,不等式可变为,利用基本不等式,可求得不等式右边的最大值为。可求实数λ的最小值为。
(Ⅰ)[证明]:由a1+2a2+3a3+…+nan=,得a1+2a2+3a3+…+(n﹣1)an﹣1=(n≥2),
①﹣②:,即(n≥2),∴当n≥2时,数列{nan}是等比数列,
又a1=1,a1+2a2+3a3+…+nan=,得a2=1,则2a2=2,∴,
∴(n≥2),∴;
(Ⅱ)解:由(Ⅰ)可知,
∴Tn=1+2×2×30+2×3×31+2×4×32+…+2n×3n﹣2,则,
两式作差得:,得:;
(Ⅲ)解:由≤(n+6)λ,得≤(n+6)λ,
即对任意n∈N*恒成立.
当n=2或n=3时n+有最小值为5,有最大值为,故有λ≥,∴实数λ的最小值为.
科目:高中数学 来源: 题型:
【题目】已知f(x)为二次函数,且f(x+1)+f(x﹣1)=2x2﹣4x,
(1)求f(x)的解析式;
(2)设g(x)=f(2x)﹣m2x+1,其中x∈[0,1],m为常数且m∈R,求函数g(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进人高三后,由于改进了学习方法,甲、乙这两个学生的考试数学成绩预计同时有了大的提升.若甲(乙)的高二任意一次考试成绩为,则甲(乙)的高三对应的考试成绩预计为(若>100.则取为100).若已知甲、乙两个学生的高二6次考试成绩分别都是由低到高进步的,定义为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值.
(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)
(Ⅱ)求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′与平面A′BD所成的角为30°.
(4)四面体A′-BCD的体积为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com