精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{1}{3}$x3-ex2+mx+1,g(x)=$\frac{{lnx+{2^{-1}}}}{{{e^{2x}}}}$.
(1)函数f(x)在点(1,f(1))处的切线与直线(1-2e)x-y+4=0平行,求函数f(x)的单调区间;
(2)设函数f(x)的导函数为f′(x),对任意的x1,x2∈(0,+∞),若$\frac{{g({x_1})-{f^'}({x_2})}}{{{e^{x_1}}-1}}$<0恒成立,求m的取值范围.

分析 (1)求出f(x)的导数,求得切线的斜率,解方程可得m=0,由导数大于0,可得增区间;导数小于0,可得减区间;
(2)由题意可得g(x1)的最大值<f′(x2)的最小值,求出g(x)的导数,求得单调区间,可得最大值,求出f(x)的导数,配方可得f′(x)的最小值,即可得到m的范围.

解答 解:(1)f′(x)=x2-2ex+m,∵f′(1)=1-2e+m=1-2e,∴m=0
即f′(x)=x2-2ex=x(x-2e),令f′(x)≥0,解得x≥2e或x≤0
所以函数f(x)的单调增区间为[2e,+∞),(-∞,0],单调减区间为(0,2e).
(2)$\frac{{g({x_1})-{f^'}({x_2})}}{{{e^{x_1}}-1}}<0$,即$g({x_1})<{f^'}({x_2})$恒成立,故$g{(x)_{max}}<{f^'}{(x)_{min}}$
∵$g(x)=\frac{{lnx+{2^{-1}}}}{{{e^{2x}}}}$,${g^'}(x)=\frac{{\frac{1}{x}{e^{2x}}-2(lnx+{2^{-1}}){e^{2x}}}}{{{{({e^{2x}})}^2}}}=\frac{{\frac{1}{x}-2lnx-1}}{{{e^{2x}}}}$
有g′(1)=0,且x∈(0,1),g′(x)>0,x∈(1,+∞),g′(x)<0
∴g(x)在x=1处取极大值即最大值,$g{(x)_{max}}=g(1)=\frac{1}{{2{e^2}}}$f′(x)=x2-2ex+m=(x-e)2+m-e2,${f^'}{(x)_{min}}=m-{e^2}$.
∵$g({x_1})<{f^'}({x_2})$恒成立,$\frac{1}{{2{e^2}}}<m-{e^2}$,故$m>{e^2}+\frac{1}{{2{e^2}}}$.

点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查不等式恒成立问题的解法,注意转化为求函数的最值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知直线l与平面α平行,P是直线l上的一定点,平面α内的动点B满足:PB与直线l成30°.那么B点轨迹是(  )
A.两直线B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正项数列{an}中,其前n项和为Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}+2}{{2}^{n}}$,Tn=b1+b2+b3+…+bn,求证:$\frac{3}{2}$≤Tn<5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|-1<x<2},B={x|-2<x<1},则集合A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<-1}C.{x|1<x<2}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1的焦点坐标为(  )
A.(-4,0)和(4,0)B.(0,-$\sqrt{7}$)和(0,$\sqrt{7}$)C.(-3,0)和(3,0)D.(0,-9)和(0,9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.4+2$\sqrt{2}$B.4+3$\sqrt{2}$C.8D.2+$\sqrt{2}$+$\sqrt{5}$+$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数f(x),当x∈(1,+∞)时,(x-1)f′(x)-f(x)>0恒成立,若a=f(2),b=$\frac{1}{2}$f(3),c=$\frac{1}{\sqrt{3}-1}$f(3),则a,b,c的大小关系为(  )
A.c<a<bB.a<b<cC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=xf′(x)的图象如图所示,则y=f(x)的图象大致是下面四个图象中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥平面ABCD.
(1)证明:AC⊥PB;
(2)若PD=3,AD=2,求异面直线PB与AD所成角的余弦值.

查看答案和解析>>

同步练习册答案