分析 (1)求出f(x)的导数,求得切线的斜率,解方程可得m=0,由导数大于0,可得增区间;导数小于0,可得减区间;
(2)由题意可得g(x1)的最大值<f′(x2)的最小值,求出g(x)的导数,求得单调区间,可得最大值,求出f(x)的导数,配方可得f′(x)的最小值,即可得到m的范围.
解答 解:(1)f′(x)=x2-2ex+m,∵f′(1)=1-2e+m=1-2e,∴m=0
即f′(x)=x2-2ex=x(x-2e),令f′(x)≥0,解得x≥2e或x≤0
所以函数f(x)的单调增区间为[2e,+∞),(-∞,0],单调减区间为(0,2e).
(2)$\frac{{g({x_1})-{f^'}({x_2})}}{{{e^{x_1}}-1}}<0$,即$g({x_1})<{f^'}({x_2})$恒成立,故$g{(x)_{max}}<{f^'}{(x)_{min}}$
∵$g(x)=\frac{{lnx+{2^{-1}}}}{{{e^{2x}}}}$,${g^'}(x)=\frac{{\frac{1}{x}{e^{2x}}-2(lnx+{2^{-1}}){e^{2x}}}}{{{{({e^{2x}})}^2}}}=\frac{{\frac{1}{x}-2lnx-1}}{{{e^{2x}}}}$
有g′(1)=0,且x∈(0,1),g′(x)>0,x∈(1,+∞),g′(x)<0
∴g(x)在x=1处取极大值即最大值,$g{(x)_{max}}=g(1)=\frac{1}{{2{e^2}}}$f′(x)=x2-2ex+m=(x-e)2+m-e2,${f^'}{(x)_{min}}=m-{e^2}$.
∵$g({x_1})<{f^'}({x_2})$恒成立,$\frac{1}{{2{e^2}}}<m-{e^2}$,故$m>{e^2}+\frac{1}{{2{e^2}}}$.
点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查不等式恒成立问题的解法,注意转化为求函数的最值问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 两直线 | B. | 椭圆 | C. | 双曲线 | D. | 抛物线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2<x<2} | B. | {x|-2<x<-1} | C. | {x|1<x<2} | D. | {x|-1<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-4,0)和(4,0) | B. | (0,-$\sqrt{7}$)和(0,$\sqrt{7}$) | C. | (-3,0)和(3,0) | D. | (0,-9)和(0,9) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4+2$\sqrt{2}$ | B. | 4+3$\sqrt{2}$ | C. | 8 | D. | 2+$\sqrt{2}$+$\sqrt{5}$+$\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | a<b<c | C. | b<a<c | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com