精英家教网 > 高中数学 > 题目详情
8.(1)(0.008)${\;}^{\frac{1}{3}}}$+($\sqrt{2}$-π)0-(${\frac{125}{64}}$)${\;}^{-\frac{1}{3}}}$;
(2)$\frac{{({{log}_3}2+{{log}_9}2)•({{log}_4}3+{{log}_8}3)}}{{lg600-\frac{1}{2}lg0.036-\frac{1}{2}lg0.1}}$.

分析 利用对数的性质、运算法则、换底公式求解.

解答 解:(1)(0.008)${\;}^{\frac{1}{3}}}$+($\sqrt{2}$-π)0-(${\frac{125}{64}}$)${\;}^{-\frac{1}{3}}}$
=0.2+1-$\frac{4}{5}$
=$\frac{2}{5}$.
(2)$\frac{{({{log}_3}2+{{log}_9}2)•({{log}_4}3+{{log}_8}3)}}{{lg600-\frac{1}{2}lg0.036-\frac{1}{2}lg0.1}}$
=$\frac{(lo{g}_{9}4+lo{g}_{9}2)•(lo{g}_{64}27+lo{g}_{64}9)}{lg600-lg\sqrt{0.036}-lg\sqrt{0.1}}$
=$\frac{lo{g}_{9}8•lo{g}_{64}243}{lg\frac{600}{\sqrt{0.0036}}}$
=$\frac{\frac{lg8}{lg9}×\frac{lg243}{lg64}}{lg1000}$
=$\frac{5}{4}$.

点评 本题考查对数的化简求值,注意对数的性质、运算法则、换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图,从一架飞机上观察前下方河流两岸P、Q两点的俯角分别为75°、45°,已知河的宽度|PQ|=20m,则此时飞机的飞行高度为$10(\sqrt{3}+1)$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(8,$\frac{π}{2}$),若直线l过点P,且倾斜角为$\frac{π}{3}$,圆C以M为圆心、8为半径.
(1)求直线l的参数方程和圆C的极坐标方程;
(2)若直线l和圆C相交于点A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2-a2-$\sqrt{2}$bc=0.
(1)求角A的大小;
(2)若sin2B+sin2C=2sin2A,且a=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的个数有(  )
①用R2=1-$\frac{{\underset{\stackrel{n}{∑}}{i-1}{(y}_{i}-\widehat{{y}_{i}})}^{2}}{{\underset{\stackrel{n}{∑}}{i-1}{(y}_{i}-\overline{y})}^{2}}$刻画回归效果,当R2越大时,模型的拟合效果越差;反之,则越好;
②可导函数f(x)在x=x0处取得极值,则f′(x0)=0;
③归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理;
④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在小于100的正整数中共有多少个数被7除余2,这些数的和是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知下列命题:
①若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0
②|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$
③△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则三角形的面积S=$\frac{1}{2}$$\sqrt{(|\overrightarrow{a}||\overrightarrow{b}|)^{2}-(\overrightarrow{a}•\overrightarrow{b})^{2}}$
④△ABC中,G为三角形所在平面内一点,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,则G为三角形的重心,
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{1}{\sqrt{x}}$的导函数为f'(x)=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.y=$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$在[π,2π]上的最小值是(  )
A.2B.1C.-1D.-2

查看答案和解析>>

同步练习册答案