精英家教网 > 高中数学 > 题目详情
18.如图,从一架飞机上观察前下方河流两岸P、Q两点的俯角分别为75°、45°,已知河的宽度|PQ|=20m,则此时飞机的飞行高度为$10(\sqrt{3}+1)$m.

分析 由正弦定理求出AP,利用三角函数求出飞机的飞行高度.

解答 解:设飞机所在位置为A,则∠PAQ=30°.
由正弦定理可得$\frac{AP}{\frac{\sqrt{2}}{2}}=\frac{20}{\frac{1}{2}}$,∴AP=20$\sqrt{2}$,
∴飞机的飞行高度为APsin75°=20$\sqrt{2}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$=$10(\sqrt{3}+1)$.
故答案为:$10(\sqrt{3}+1)$.

点评 本题给出实际应用问题,求飞机的飞行高度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系 xOy 中,离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,且A到右准线的距离为6,点P、Q是椭圆C上的两个动点.
(1)求椭圆的标准方程;
(2)如图,当P、O、Q共线时,直线PA,QA分别与y轴交于M,N两点,求证:$\overrightarrow{AM}$•$\overrightarrow{AN}$定值;
(3)设直线AP,AQ的斜率分别为k1,k2,当k1•k2=-1时,证明直线PQ经过定点R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{ln(2x-1)}{x}$,则f′($\frac{3}{2}$)=$\frac{6-4ln2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某地区的电价为0.8元/(kW•h),年用电量为1亿kW•h,今年电力部门计划下调电价以提高用电量、增加收益.下调电价后新增的用电量与实际电价和原电价的差的平方成正比,比例系数为50.该地区电力的成本是0.5元/(kW•h).
(1)写出电力部门收益y与实际电价x间的函数关系时;
(2)随着x的变化,y的变化有和规律?
(3)电力部门将电价定为多少,能获得最大收益?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知锐角三角形ABC,下列三角函数值为负数的有②③ 个.
①$sin({\frac{π}{2}+B})$,②$cos({\frac{π}{2}+B})$,③tan(A+B),④cos(-B)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则2n+1(n∈N *)位回文数的个数为(  )
A.9×10 n-1B.9×10 nC.9×10 n+1D.9×10 n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x(lna-lnx)(a>0).
(Ⅰ)当a=e2时,求函数f(x)在x=1处的切线方程;
(Ⅱ)若函数f(x)的图象恒在直线x-y+1=0的下方,求实数a的取值范围;
(Ⅲ)当a=e时,若x1,x2∈(1,$\frac{e}{2}$),且x1≠x2,判断(x1+x24与e2x1x2的大小关系,并说明理由.
注:题目中e=2.71828…是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知函数f(x)的定义域为(0,1),求f(x2)的定义域;
(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)(0.008)${\;}^{\frac{1}{3}}}$+($\sqrt{2}$-π)0-(${\frac{125}{64}}$)${\;}^{-\frac{1}{3}}}$;
(2)$\frac{{({{log}_3}2+{{log}_9}2)•({{log}_4}3+{{log}_8}3)}}{{lg600-\frac{1}{2}lg0.036-\frac{1}{2}lg0.1}}$.

查看答案和解析>>

同步练习册答案