精英家教网 > 高中数学 > 题目详情
10.执行如图所示的程序框图,输出的S值为(  )
A.$\frac{2}{3}({4^{25}}-1)$B.$\frac{2}{3}({4^{26}}-1)$C.250-1D.251-1

分析 由题意,由等差数列的通项公式可求得当k=26时退出循环,模拟执行程序框图,可得程序框图的功能是计算并输出:S=2+23+25+…+225的值,由等比数列的求和公式即可得解.

解答 解:由题意,k的取值为首项为1,等差为2的等差数列,当k≥50时退出循环,既有:1+(k-1)×2≥50,可解得:k≥25.5,即当k=26时退出循环,故模拟执行程序框图,可得程序框图的功能是计算并输出:S=2+23+25+…+225
由等比数列的求和公式可得:S=2+23+25+…+225=$\frac{2-{2}^{25}×4}{1-4}$=$\frac{2}{3}({4^{25}}-1)$.
故选:A.

点评 本题主要考查了循环结构的程序框图,考查了等差数列与等比数列知识的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.掷骰子2次,每个结果以(x,y)记之,其中x1,x2分别表示第一颗,第二颗骰子的点数,设A={(x1,x2)|x1+x2=10},B={(x1,x2)|x1>x2},则P(B|A)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{13}-\frac{y^2}{3}=1$的渐近线与圆(x-4)2+y2=r2(r>0)相切,则r=(  )
A.4B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$是以点A(3,-1)为起点,且与$\overrightarrow{b}$=(-3,4)平行的单位向量,则$\overrightarrow{a}$的终点坐标是(  )
A.($\frac{3}{5}$,-$\frac{4}{5}$)或(-$\frac{3}{5}$,$\frac{4}{5}$)B.($\frac{5}{13}$,-$\frac{12}{13}$)或(-$\frac{5}{13}$,$\frac{12}{13}$)
C.($\frac{12}{5}$,-$\frac{1}{5}$)或($\frac{18}{5}$,-$\frac{9}{5}$)D.($\frac{12}{5}$,$\frac{1}{5}$)或($\frac{18}{5}$,$\frac{9}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD是菱形,DE⊥DC,平面DEC⊥平面ABCD.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)若AF∥DE,AF=$\frac{1}{3}$DE,点M在线段BD上,且DM=$\frac{2}{3}$BD,求证:AM∥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2-b2)=2accosB+bc.
(Ⅰ)求角A;
(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=$\frac{π}{2}$,求tanB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示程序框图,则满足|x|+|y|≤2的输出的有序实数对(x,y)的概率为(  )
A.$\frac{1}{16}$B.$\frac{3}{32}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设随机变量X~N(10,1),P(9≤x<10)=a,其中a=$\int_{\frac{1}{9}}^{\frac{1}{4}}{\frac{1}{{\sqrt{x}}}dx}$,则P(X≥11)=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax+y的最大值为4,则a=(  )
A.3B.2C.-2D.-3

查看答案和解析>>

同步练习册答案