精英家教网 > 高中数学 > 题目详情
1.双曲线$\frac{x^2}{13}-\frac{y^2}{3}=1$的渐近线与圆(x-4)2+y2=r2(r>0)相切,则r=(  )
A.4B.3C.2D.$\sqrt{3}$

分析 通过双曲线可得其渐近线方程,利用直线与圆的关系计算即得结论.

解答 解:根据题意,可得双曲线的渐近线方程为y=±$\frac{\sqrt{39}}{13}$x,即x±$\frac{\sqrt{39}}{3}$y=0,
∵渐近线与圆相切,
∴圆心(4,0)到渐近线的距离d与r相等,
∴r=d=$\frac{4}{\sqrt{1+(\frac{\sqrt{39}}{3})^{2}}}$=$\sqrt{3}$,
故选:D.

点评 本题考查求圆的半径,涉及到双曲线与渐近线、直线与圆的位置关系、点到直线的距离等知识,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,则输出的结果是(  )
A.2B.$\frac{3}{2}$C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2)则下列命题中与$\overrightarrow{a}⊥\overrightarrow{b}$等价的个数有(  )
①$\overrightarrow{a}•\overrightarrow{b}$=0;②x1x2+y1y2=0;③|$\overrightarrow{a}+\overrightarrow{b}$|2=|$\overrightarrow{a}-\overrightarrow{b}$|2;④${\overrightarrow{a}}^{2}$+$\overrightarrow{b}$2=($\overrightarrow{a}-\overrightarrow{b}$)2
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某高级中学高三学生有2000名,在第一次模拟考试中数学成绩ξ服从正态分布N(120,σ2),已知P(100<?<120)=0.45.若学校教研室欲按分层抽样的方式从中抽出100份试卷进行分析研究,则应从140分以上的试卷中抽(  )
A.4份B.5份C.8份D.10份

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设M(x0,y0)为抛物线C:y2=8x上一点,F为C的焦点,若以F为圆心,|FM|为半径的圆和C的准线相交,则x0的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某城市随机监测一年内100天的空气质量PM2.5的数据API,结果统计如下:
API[0,50](50,100](100,150](150,200](200,250](250,+∞)
天数61222301416
(1)若将API值低于150的天气视为“好天”,并将频率视为概率,根据上述表格,预测今年高考6月7日、8日两天连续出现“好天”的概率;
(2)API值对部分生产企业有着重大的影响,假设某企业的日利润f(x)与API值x的函数关系为:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(单位;万元),利用分层抽样的方式从监测的100天中选出5天,再从这5天中任取3天计算企业利润之和,求利润之和小于80万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥平面ABC,D为棱A1B1上的动点,E为AA1的中点,点F在棱AB上,且AF=$\frac{1}{4}$AB.
(1)设$\frac{{{A_1}D}}{{D{B_1}}}$=λ,当λ为何值时,EF∥平面BC1D;
(2)在(1)条件下,求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,输出的S值为(  )
A.$\frac{2}{3}({4^{25}}-1)$B.$\frac{2}{3}({4^{26}}-1)$C.250-1D.251-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:-1<$\frac{-2λ+10}{\sqrt{{λ}^{2}+4}•\sqrt{29}}$<0.

查看答案和解析>>

同步练习册答案