| A. | 3 | B. | 2 | C. | -2 | D. | -3 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
则A(2,0),B(1,1),
若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,
此时,目标函数为z=2x+y,![]()
即y=-2x+z,
平移直线y=-2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,
若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,
此时,目标函数为z=3x+y,
即y=-3x+z,
平移直线y=-3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,
故a=2,
故选:B
点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}({4^{25}}-1)$ | B. | $\frac{2}{3}({4^{26}}-1)$ | C. | 250-1 | D. | 251-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (-1,0) | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-$\frac{y^2}{4}$=1 | B. | $\frac{x^2}{4}$-y2=1 | C. | x2-$\frac{y^2}{2}$=1 | D. | $\frac{x^2}{2}$-y2=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com